
hashdb

USERS MANUAL

September 14, 2016

Authored by:
Bruce D. Allen

Jessica R. Bradley
Simson L. Garfinkel

Contents

1 Introduction 1
1.1 Overview of hashdb . 1
1.2 Intended Audience . 1
1.3 hashdb Resources . 2
1.4 Conventions Used in this Manual . 2
1.5 Changes Over the hashdb v2.0.1 Release 3
1.6 Licensing . 5
1.7 Obtaining hashdb . 5

1.7.1 Installing on Windows . 5
1.7.2 Installing on Linux or Mac . 7
1.7.3 Quickstart Guide . 8

2 How hashdb Works 9
2.1 Block Hash . 9
2.2 Blacklist Data . 10
2.3 Repository Names . 11
2.4 Forensic Data . 11
2.5 Recursive Extraction . 11
2.6 Recursion Path . 12
2.7 File Hash . 12
2.8 Managing False Positives . 12
2.9 Building a hashdb Database . 14
2.10 Scanning . 14
2.11 Contents of a Hash Database . 15
2.12 Database Settings . 15
2.13 Maintaining Database Integrity . 17

3 Running the hashdb Tool 17
3.1 Creating a New Hash Database . 17

3.1.1 create . 18
3.2 Importing and Exporting . 19

3.2.1 ingest . 19
3.2.2 import_tab . 21
3.2.3 import . 21
3.2.4 export . 21

3.3 Database Manipulation . 22
3.3.1 add . 22
3.3.2 add_multiple . 22
3.3.3 add_repository . 22
3.3.4 add_range . 22
3.3.5 intersect . 22
3.3.6 intersect_hash . 22
3.3.7 subtract . 22
3.3.8 subtract_hash . 22
3.3.9 subtract_repository . 23

3.4 Scan Services . 24
3.4.1 scan_list . 24
3.4.2 scan_hash . 24

ii

3.4.3 scan_media . 24
3.5 Statistics . 26

3.5.1 size . 27
3.5.2 sources . 27
3.5.3 histogram . 27
3.5.4 duplicates . 27
3.5.5 hash_table . 27
3.5.6 read_media . 27

3.6 Performance Analysis . 27
3.6.1 add_random . 27
3.6.2 scan_random . 27
3.6.3 add_same . 28
3.6.4 scan_same . 28

4 Tools that use hashdb 28
4.1 SectorScope . 28
4.2 The SectorScope Autopsy Plug-in . 29

4.2.1 Installing the SectorScope Plug-in 29
4.2.2 Configuring the SectorScope Plug-in 30

4.3 bulk_extractor . 30

5 Use Cases for hashdb 31
5.1 Querying for Source or Database Information 32
5.2 Writing Software that works with hashdb 32
5.3 Scanning or Importing to a Database Using bulk_extractor 32
5.4 Updating Hash Databases . 32
5.5 Exporting Hash Databases . 33
5.6 Sharding Hash Databases . 33

6 hashdb Input/Output Syntax 33
6.1 General Output Conventions . 33
6.2 Tab-delimited Import File . 34
6.3 Import/Export Syntax . 34

6.3.1 Source Data . 34
6.3.2 Block Hash Data . 34

6.4 Scan Data . 34
6.4.1 Expanded Hash . 35
6.4.2 Expanded Hash, Optimized . 36
6.4.3 Hash Count . 37
6.4.4 Approximate Hash Count . 37

6.5 Scan Data Output from Tools . 37
6.6 Scan Stream Interface Data . 37
6.7 Scan List Input File . 38
6.8 Size . 39
6.9 Sources . 39
6.10 Histogram . 39
6.11 Duplicates . 40
6.12 Hash Table . 40
6.13 Read Media . 40
6.14 Timing . 40

iii

6.15 Database Changes . 40

7 Using the hashdb Library APIs 41
7.1 Data Types . 42
7.2 Settings . 42
7.3 Support Functions . 42
7.4 Import . 43
7.5 Scan . 44
7.6 Scan Stream . 45
7.7 Timestamp . 46

8 LMDB Data Stores 46
8.1 LMDB Hash Store . 46
8.2 LMDB Hash Data Store . 46
8.3 LMDB Source ID Store . 47
8.4 LMDB Source Data Store . 48
8.5 LMDB Source Name Store . 48
8.6 Data Store Changes . 48

9 Alternate Configurations 50

Appendices 51

A hashdb Quick Reference 51

B Output of the hashdb Help Command 52

C hashdb C++ API: hashdb.hpp 58

iv

1 Introduction

1.1 Overview of hashdb

hashdb is a tool that can be used to find data in raw media using cryptographic hashes
calculated from blocks of data. It is a useful forensic investigation tool for tasks such
as malware detection, child exploitation detection or corporate espionage investigations.
The tool provides several capabilities that include:

• Creating hash databases of MD5 block hashes.

• Importing block hash values.

• Scanning the hash database for matching hash values.

• Providing source information for hash values.

Using hashdb, a forensic investigator can take a known set of blacklisted media and gen-
erate a hash database. The investigator can then use the hash database to search against
raw media for blacklisted information. For example, given a known set of malware, an
investigator can generate a sector hash database representing that malware. The inves-
tigator can then search a given corpus for fragments of that malware and identify the
specific malware content in the corpus.

hashdb relies on block hashing rather than full file hashing. Block hashing provides an
alternative methodology to file hashing with a different capability set. With file hashing,
the file must be complete to generate a file hash, although a file carver can be used to
pull together a file and generate a valid hash. File hashing also requires the ability to
extract files, which requires being able to understand the file system used on a partic-
ular storage device. Block hashing, as an alternative, does not need a file system or
files. Artifacts are identified at the block scale (usually 512 bytes) rather than at the
file scale. While block hashing does not rely on the file system, artifacts do need to be
sector-aligned for hashdb to find hashes [3].

hashdb provides an advantage when working with hard disks and operating systems that
fragment data into discontiguous blocks yet still sector-align media. This is because
scans are performed along sector boundaries. Because hashdb works at the block reso-
lution, it can find part of a file when the rest of the file is missing, such as with a large
video file where only part of the video is on disk. hashdb can also be used to analyze
network traffic (such as that captured by tcpflow). Finally, hashdb can identify artifacts
that are sub-file, such as embedded content in a .pdf document.

hashdb stores cryptographic hashes (along with their source information) that have been
calculated from hash blocks. It also provides the capability to scan other media for hash
matches. This manual includes uses cases for the hashdb tools, including usage with
Autopsy, SectorScope, bulk_extractor, and the hashdb Python and C++ libraries,
and demonstrates how users can take full advantage of all of its capabilities.

1.2 Intended Audience

This Users Manual is intended to be useful to new, intermediate and experienced users
of hashdb. It provides an in-depth review of the functionality included in hashdb and

1

shows how to access and utilize features through command line operation of the tool.
This manual includes working examples with links to the input data used, giving users
the opportunity to work through the examples and utilize all aspects of the system. This
manual also introduces Forensic tools that use hashdb.

For developers, this manual provides in-depth coverage of the data syntax used by hashdb
and for interfacing with hashdb using the hashdb c++ and Python interfaces.

1.3 hashdb Resources

Users are encouraged to visit the hashdb Wiki page at https://github.com/NPS-DEEP/
hashdb/wiki for quick links to downloads, documentation, and examples.

All hashdb users should join the bulk_extractor users Google group for more informa-
tion and help with any issues encountered. To join, send an email to bulk_extractor-
users+subscribe@ googlegroups.com.

Several articles are available related to block hashing, and its practical and research
applications. Some of those articles are specifically cited throughout this manual. Here
are some additional references we recommend:

• Michael McCarrin, Bruce Allen. Rapid Recognition of Blacklisted Files and Frag-
ments. Naval Postgraduate School. http://www.osdfcon.org/presentations/
2015/McCarrin-Allen_osdfcon.pdf.

• Jim Jones, Tahir Khan, Kathryn Laskey, Alex Nelson, Mary Laamanen, Doug
White. Inferring Past Activity from Partial Digital Artifacts. George Mason Uni-
versity, National Institute of Standards and Technology. http://www.osdfcon.
org/presentations/2015/Jim-Jones_EtAl-Release.pdf.

• Simson Garfinkel, Michael McCarrin. Hash-based Carving: Searching media for
complete files and file fragments with sector hashing and hashdb. DFRWS 2015
USA. http://www.sciencedirect.com/science/article/pii/S1742287615000468

• Joel Young, Kristina Foster, Simson Garfinkel, Kevin Fairbanks. Distinct Sector
Hashes for Target File Detection. http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?reload=true&arnumber=6311397.

• Garfinkel, Simson, Alex Nelson, Douglas White and Vassil Rousseve. Using purpose-
built functions and block hashes to enable small block and sub-file forensics. Digi-
tal Investigation. Volume 7. 2010. Page S13–S23. http://www.dfrws.org/2010/
proceedings/2010-302.pdf.

• Foster, Kristina. Using Distinct Sectors in Media Sampling and Full Media Anal-
ysis to Detect Presence of Documents From a Corpus. Naval Postgraduate School
Masters Thesis, September 2012. http://calhoun.nps.edu/public/handle/10945/
17365.

1.4 Conventions Used in this Manual

This manual uses standard formatting conventions to highlight file names, directory
names and example commands. The conventions for those specific types are described

2

https://github.com/NPS-DEEP/hashdb/wiki
https://github.com/NPS-DEEP/hashdb/wiki
http://www.osdfcon.org/presentations/2015/McCarrin-Allen_osdfcon.pdf
http://www.osdfcon.org/presentations/2015/McCarrin-Allen_osdfcon.pdf
http://www.osdfcon.org/presentations/2015/Jim-Jones_EtAl-Release.pdf
http://www.osdfcon.org/presentations/2015/Jim-Jones_EtAl-Release.pdf
http://www.sciencedirect.com/science/article/pii/S1742287615000468
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6311397
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6311397
http://www.dfrws.org/2010/proceedings/2010-302.pdf
http://www.dfrws.org/2010/proceedings/2010-302.pdf
http://calhoun.nps.edu/public/handle/10945/17365
http://calhoun.nps.edu/public/handle/10945/17365

in this section.

Names of programs including the post-processing tools native to hashdb and third-party
tools are shown in bold, as in bulk_extractor.

File names are displayed in a fixed width font. They will appear as filename.txt within
the text throughout the manual.

Directory names are displayed in italics. They appear as directoryname/ within the text.
The only exception is for directory names that are part of an example command. Di-
rectory names referenced in example commands appear in the example command format.

Database names are denoted with bold, italicized text. They are always specified in
lower-case, because that is how they are referred in the options and usage information
for hashdb. Names will appear as databasename .

This manual contains example commands that should be typed in by the user. A com-
mand entered at the terminal is shown like this:

� command

The first character on the line is the terminal prompt, and should not be typed. The
black square is used as the standard prompt in this manual, although the prompt shown
on a users screen will vary according to the system they are using.

1.5 Changes Over the hashdb v2.0.1 Release

hashdb Version 3 provides significant functional and performance improvements over
v2.0.1:

• False positive block matches may be evaluated because metadata about hashes
and sources are now being stored:

– Block labels and block entropy values indicate characteristics about data
blocks.

– Source type, zero count, and nonprobative count of a source indicate the
density of useful blocks within a source.

• Sources are now tracked by source hash rather than by name. This fixes two
problems:

– By not storing duplicates, source relevance and similarity between sources
may be weighed.

– Groups of identical sources are readily identified.

• Bulky output from scans has been significantly reduced:

– Information is returned in the more condensed JSON format rather than in
XML.

– Source offsets are presented as lists in one record rather than repeating hash
and source information for each offset.

3

– Additionally, an optimization mode is available where information about
matched sources and hashes are returned only once and are not reprinted
if a source or hash is matched again.

• A complete hashdb API is now available for C++ and Python.

– A scan interface supports scan functions and functions for reading all hash
and source information.

– An import interface supports functions for importing hash and source infor-
mation.

– Additional interfaces support access to settings and higher-layer capabilities.

• The database has been retuned to improve scan and import speed:

– A compressed hash store has been added for extremely fast and compact
approximate scan lookups.

– The Bloom filter has been removed in favor of the dense hash store.

– The hash data store contains lists of source offsets for each source rather than
one entry per source offset, reducing its size.

– Several scan modes are available, supporting various levels of verbosity and
performance:

∗ expanded scans for matches and returns complete match information in
JSON format.

∗ expanded optimized scans for matches and returns complete match
information in JSON format but matched sources and hashes are cached
so that information is not reprinted in other matches.

∗ count only returns a match count and does not take time to parse match
information into a data structure.

∗ approximate count is fast because it does not read the hash informa-
tion store when there is a match, but it can have false positives in its
matching and in its count.

• hashdb can now read media images, scan media images, and ingest sources directly.
bulk_extractor is no longer required to perform these functions.

• The build process has been restructured to support parallel build trees (VPATH
builds). The goal is to support compiling to additional targets such as the ARM
processor.

4

1.6 Licensing

hashdb code is provided with the following notice:
The software provided here is released by the Naval Postgraduate School, an agency
of the U.S. Department of Navy. The software bears no warranty, either expressed
or implied. NPS does not assume legal liability nor responsibility for a User’s use of
the software or the results of such use.

Please note that within the United States, copyright protection, under Section 105 of
the United States Code, Title 17, is not available for any work of the United States
Government and/or for any works created by United States Government employees.
User acknowledges that this software contains work which was created by NPS gov-
ernment employees and is therefore in the public domain and not subject to copyright.

However, because hashdb includes source modules, the compiled hashdb executable
may be covered under a different copyright.

rapidjson is Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo
Yip. All rights reserved.

liblmdb is Copyright 2011-2016 Howard Chu, Symas Corp. All rights reserved.

libewf is Copyright 2007 Free Software Foundation, Inc.

crc32.h is COPYRIGHT (C) 1986 Gary S. Brown.

1.7 Obtaining hashdb

The hashdb tool and API interface library are readily available for Windows systems,
Linux flavors, and MacOS. A Windows installer is available for Windows users. A source
code distribution is available for Linux and Mac users. Developers may download hashdb
directly from source available on GitHub.

Steps for installing hashdb on Windows and one flavor of Linux are described here. For
more installation options, please refer to the installation page on the hashdb Wiki at
https://github.com/NPS-DEEP/hashdb/wiki/Installing-hashdb.

For information on installing SectorScope and bulk_extractor tools which use hashdb,
Please see Section 4.

1.7.1 Installing on Windows

Windows users should download the Windows Installer for hashdb. The file to download
is located at http://digitalcorpora.org/downloads/hashdb and is called hashdb-x.y.
z-windowsinstaller.exe where x.y.z is the latest version number.

You should close all Command windows before running the installation executable. Win-
dows will not be able to find the hashdb tools in a Command window if any are open
during the installation process. If you do not do this before installation, simply close all

5

https://github.com/NPS-DEEP/hashdb/wiki/Installing-hashdb
http://digitalcorpora.org/downloads/hashdb

Figure 1: Windows 8 warning when trying to run the installer. Select “More Info” and
then “Run Anyway.”

Command windows after installation. When you re-open, Windows should be able to
find hashdb.

Next run the hashdb-x.y.z-windowsinstaller.exe file. This will automatically install
hashdb on your machine. SomeWindows safeguards may try to prevent you from running
it. Figure 1 shows the message Windows 8 displays when trying to run the installer. To
run anyway, click on “More info” and then select “Run Anyway.”

When the installer file is executed, the installation will begin and show a dialog like the
one shown in Figure 2. Users should select all options needed:

• hashdb tool
Installs the hashdb tool into the Program Files directory and installs the Users
Manual shortcut in the Start menu.

• Add to PATH
Appends the path to the hashdb tool to the System PATH variable so that it can
be found at the command prompt and by other tools.

• hashdb Python module
Installs the following files onto the desktop at Users\Public\Desktop:

– hashdb.py
The hashdb Python interface file.

– _hashdb.pyd
The .dll file needed by hashdb.py.

– test_hashdb_module.py
A small test program for helping to validate and diagnose the installation of
hashdb.py and hashdb.py. This file may be delted.

Suggestions for managing these files placed on the public desktop include:

– Move them to your working directory so that they can be found by your
Python program.

– Move them to another directory and set PATH to include the path to _hashdb.pyd
and set PYTHONPATH to include the path to hashdb.py.

hashdb is now installed on your system can be run from the command line.

6

Figure 2: Dialog appears when the user executes the Windows Installer. Select the
default configuration to install all components.

1.7.2 Installing on Linux or Mac

This section describes steps for installing hashdb on a Fedora system and is intended
to illustrate the installation process. For steps on installing hashdb to other flavors of
Linux or for MacOS, and for installing specific configurations, please refer to the in-
stallation page on the hashdb Wiki at https://github.com/NPS-DEEP/hashdb/wiki/
Installing-hashdb.

Before compiling hashdb for your platform, you may need to install other packages on
your system which hashdb requires to compile cleanly and with a full set of capabilities.

Dependencies
The following commands should add the requisite packages:

� sudo dnf update
� sudo dnf groupinstall development-tools
� sudo dnf install gcc-c++
� sudo dnf install openssl-devel
� sudo dnf install libewf-devel
� sudo dnf install bzip2-devel
� sudo dnf install swig
� sudo dnf install python-devel

Download and Install hashdb
Next, download the latest version of hashdb. The software can be downloaded from http:
//digitalcorpora.org/downloads/hashdb/. The file to download is hashdb-x.y.z.tar.gz
where x.y.z is the latest version.

After downloading the file, un-tar it by either right-clicking on the file and choosing
“extract to...’ or typing the following at the command line:

7

https://github.com/NPS-DEEP/hashdb/wiki/Installing-hashdb
https://github.com/NPS-DEEP/hashdb/wiki/Installing-hashdb
http://digitalcorpora.org/downloads/hashdb/
http://digitalcorpora.org/downloads/hashdb/

� tar -xvf hashdb-x.y.z.tar.gz

Then, in the newly created hashdb-x.y.z directory, run the following commands to install
hashdb in /usr/local/bin (by default):

� ./configure
� make
� sudo make install

hashdb is now installed on your system and can be run from the command line.

Note: sudo is not required. If you do not wish to use sudo, build and install hashdb in
your own space at “$HOME/local” using the following commands:

� ./configure --prefix=$HOME/local/ --exec-prefix=$HOME/local CPPFLAGS=-
I$HOME/local/include/ LDFLAGS=-L$HOME/local/lib/

� make
� make install

Run hashdb
When installed as administrator, the hashdb tool should automatically be accessible.
When installed as a user, the hashdb tool can be made available by typing:

� export PATH=$HOME/local/bin:$PATH

Import the Python hashdb Module
To use the Python hashdb module, your shell must have access to the installed python.py
and _python.so resources.

When installed as administrator, the hashdb Python interface can be made available by
typing:

� export PYTHONPATH=/usr/local/lib/python2.7/site-packages:/usr/local/
lib64/python2.7/site-packages

When installed as a user, the hashdb Python interface can be made available by typing:

� export PYTHONPATH=~/local/lib/python2.7/site-packages:~/local/lib64/
python2.7/site-packages

1.7.3 Quickstart Guide

The following steps provide a very brief introduction to running your new installation
of hashdb. Steps include creating a demo database and scanning for matching hashes.

1. Navigate to the directory where you would like to create a hash database. Then,
to run hashdb from the command line, type the following instructions:

� hashdb create demo.hdb

In the above instructions, demo.hdb is the empty database that will be created
with default database settings.

8

2. Next, import data into the database. In this example, lets import hashes from the
Kitty Material demo dataset available at http://digitalcorpora.org/corpora/
scenarios/2009-m57-patents/KittyMaterial. But rather than downloading
these files and ingesting them, lets just import the pre-made KittyMaterial.json
data available at http://digitalcorpora.org/downloads/hashdb/demo/KittyMaterial.
json. After downloading this, type the following:

� hashdb import demo.hdb KittyMaterial.json

This command, if executed successfully, will print processing status followed by
statistics indicating changes to the database.

3. Next, scan a media image for matching hashes. In this example, lets scan the demo
media image available at http://digitalcorpora.org/corpora/scenarios/2009-
m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01 which con-
tains blacklist block hashes from the Kitty demo:

� hashdb scan_media demo.hdb jo-favorites-usb-2009-12-11.E01

With this media and dataset, the first block hash matched is at offset 2543104 for
hash 1d7379fd4d5cf676a9d4de1e48337e71:

2543104 1d7379fd4d5cf676a9d4de1e48337e71 {"block_hash":
"1d7379fd4d5cf676a9d4de1e48337e71","k_entropy":4880,
"block_label":"","count":1,"source_list_id":1193146442,"sources":
[{"file_hash":"1dd00f2e51aeebe7541cea4ade2e20b5","filesize":1549288,
"file_type":"","zero_count":0,"nonprobative_count":10,"name_pairs":
["/home/bdallen/KittyMaterial","/home/bdallen/KittyMaterial/
HighQuality/DSC00003.JPG"]}],"source_offsets":
["1dd00f2e51aeebe7541cea4ade2e20b5",1,[0]]}

2 How hashdb Works

The hashdb tool provides capabilities to create, edit, access and search databases of
cryptographic hashes created from hash blocks. The cryptographic hashes are imported
into a database from a directory, another database, bulk_extractor or JSON data,
or trough the hashdb API. Once a databases is created, hashdb provides users with the
capability to scan the database for matching hash values and identify matching content.
Hash databases can be exported, added to, subtracted from and shared.

Figure 3 provides an overview of the capabilities included with the hashdb tool. hashdb
populates databases from whitelist source files or other media provided in JSON for-
mat or through the API. Users can add or remove data from the database after it is
created. Once the database is populated, hashdb can export content from the database
in JSON format. It also provides an API that can be used by third party tools (as it
is used in the bulk_extractor program) to create, populate and access hash databases.

2.1 Block Hash

hashdb works by matching hashes calculated from blocks of data. hashdb is different
from tools that match files because it can find matches even when part of a file is miss-
ing or changed. hashdb stores and scans for hashes created from contiguous blocks of

9

http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/KittyMaterial
http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/KittyMaterial
http://digitalcorpora.org/downloads/hashdb/demo/KittyMaterial.json
http://digitalcorpora.org/downloads/hashdb/demo/KittyMaterial.json
http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01
http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01

Blacklist
Files

Raw
Media

Import

Disk Image

Hash
Database

Python
API

C++
API

hashdb
Tool

Export

JSON

Data

JSON

Data
Scan Match

3rd Party
Programs

bulk_extractor

SectorScope

NIST
CSV
Files

Figure 3: Overview of the hashdb system

Window size (block size)

Bytes of data

Blocks of data
being hashed

Hash interval (step size)

Figure 4: Data blocks are hashed along an interval of bytes

data. We call the size of the block hashed the block size. hashdb stores and scans for
hashes in step increments along a hash interval. Blocks hashed at step-sized intervals
are illustrated in Figure 4.

As an optimization, hashdb provides a byte alignment setting. The byte alignment value
must be divisible by the step size. The default configuration with 512 for step size,
block size, and byte alignment is shown in Figure 5. Byte alignment is described in
subsection 2.12.

2.2 Blacklist Data

Blacklist data is the data we scan against to determine whether forensic data contains
probative artifact. We build a hash database of blacklist data by importing block hashes
from blacklist files, copying from other hash databases, or importing from other sources
using data prepared in JSON format.

10

Byte 0

step size = block size = byte alignment = 512 bytes

...

Byte 512 Byte 1024 Byte 1536

Figure 5: By default, hashes are calculated from 512 byte blocks of data along 512
byte intervals and the database uses a byte alignment of 512

Each block hash in the database contains one or more file offsets for one or more sources
indicating a source and location within the source where the hash is located. If a block
is found several times for a source, then several offsets will be recorded for that source.
If a block is found in more than one source, then more than one source will contain off-
set information for each source. Block hashes with many source offsets tend to contain
non-probative data.

2.3 Repository Names

Blacklist data may come from multiple sources called “repositories”. hashdb tracks repos-
itory names in order to know what categories blacklist data belongs to. When importing
into a database, users may provide repository names specific to balcklist categories or
cases, or allow hashdb to select default values. When scanning, hashes may match
sources from several repositories.

2.4 Forensic Data

Forensic data is the data we scan to see if it contains artifact matching that in our hash
database. Note that just having matches is not sufficient to be considered probative.
Some matches are common to many files. hashdb tracks entropy and data information
to automate the process of eliminating many false positives. Direct analysis such as that
provided by the SectorScope tool may be used to see the exact content at that location.
SectorScope is available at https://github.com/NPS-DEEP/NPS-SectorScope/wiki.

2.5 Recursive Extraction

The hashdb ingest, scan_media, and read_media commands support recursive extrac-
tion, meaning that they can recursively decompress compressed content. For ingest,
the result is that compressed source data is uncompressed and submitted as a new file to
be ingested. For scan_media, the result is that compressed media is recursively uncom-
pressed and scanned. For read_media, the media image offset is recursively interpreted
and the uncompressed content is returned. hashdb currently decompresses zip and gzip
encodings.

11

https://github.com/NPS-DEEP/NPS-SectorScope/wiki

Filename "myfile"
File hash = a0f9... -----------------------------

Byte
1000

Byte
2000

{

zip

------------------Filename "myfile-1000-zip"
File hash = b362...

Byte 2100
Recursion path "1000-zip-2100"

Figure 6: Example of new file myfile-100-zip uncompressed from file myfile

2.6 Recursion Path

Typically, an offset points directly to a byte in a source file or a media image. But when
data is decompressed or recursively decompressed, it includes a recursion path to reach
the decompressed data. An offset consists of the following:

• The byte offset into the data, specifically, a source file or media image.

• Zero or more recursion path sequences, from out to in, consisting of:

– A delimiter (-).

– The uncompression algorithm, such as zip.

– A delimiter (-).

– The byte offset into the uncompressed data.

Example byte offset 2100 at recursion path 1000-zip-2100 within uncompressed data
obtained by unzipping data starting at byte 1000 of file myfile is shown in Figure 6.

2.7 File Hash

hashdb tracks sources by their file hash rather than by their filename or repository name.
This approach provides several benefits:

• The database does not store block hashes from multiple sources when the sources
are actually the same file.

• Source filenames and repository names for the same file are grouped together and
may be looked up by their file hash value.

2.8 Managing False Positives

A significant problem when scanning for probative blocks is dealing with false positives
[1]. False positives arise from data that is easily generated or commonly duplicated such
as sparse data or lookup tables. hashdb records and uses information about blocks and
sources in order to identify blocks as nonprobative. Then, post-processing tools such as
SectorScope can readily evaluate matched blocks with these false positives removed.

12

Here we describe the data that hashdb stores with hashes and sources. How this data is
used to classify blocks as nonprobative is a complex issue. hashdb stores this data. It is
up to post-processing tools such as SectorScope to evaluate it.

Data stored with sources:

• File Hash
Matched source files are indexed by file hash (new to hashdb v3). The SectorScope
tool uses this value to visualize how specific source files are distributed across a
media image.

• File Size
The source file size indicates how big a source file is. The SectorScope tool uses
this value to know what percentage of a source file is matched in a scan.

• File Type
This field stores information about the type of the source file. This field is not
used by the hashdb Tool but is available through the hashdb API interfaces for
classifying the file type.

• File Zero Count
The zero count indicates the number of blocks in the source consisting completely
of the 0 byte. These blocks are skipped by the hashdb scan_stream and ingest
commands and are not imported into the database or scanned for.

• File Nonprobative Count
The nonprobative count indicates how many blocks of the source file are deemed
nonprobative. In the bulk_extractor hashdb scanner import function and in the
hashdb tool ingest function, this value is set to the number of blocks that have
been given a block label, indicating that the block is likely nonprobative.

• Name Pairs
The name pairs identify the list of all source repository name and filename pairs
associated with a source file as identified by the source file hash. When scanning,
this list provides a comprehensive indication of what a hash match is a member
of.

Data stored with hashes:

• Block Hash
The block hash is the hash value calculated from a block of data. hashdb databases
are populated with block hash values from sources. When scanning, block hash
values are calculated from media images and are scanned for in a hashdb database.

• Entropy
We calculate the entropy of data blocks and use this value to help estimate that
the block may be nonprobative. Blocks with a low entropy value are often non-
probative. hashdb calculates the Shannon entropy of blocks using an alphabet of
216 values. hashdb provides entropy as k_entropy, entropy scaled up by 1, 000 so
that it can be managed as an integer. Divide k_entropy by 1, 000 to obtain actual
entropy with three decimal place precision.

13

Data in blocks can be a member of many types of alphabets, for example readable
text or executable code. For improved results, we recommend considering the type
of data along with the calculated entropy when estimating that a block may be
nonprobative.

• Block Label
Block labels may be used to hold information about the nature of the block. For
example it might be used to indicate that the byte values increment, indicating a
homogeneous data structure [1].

• Count
The count indicates the total number of source offsets matching a given block.
High count values are likely to be nonprobative.

• Source Offsets
The list of source offset information provides offset information for each source
related to the block:

– The file hash of the associated block.
– The sub-count of offsets attributed by the given source.
– The list of file offsets where the block is found in the given source. Long

lists are truncated to conserve space.

2.9 Building a hashdb Database

There are several ways to populate a database:

• Using the hashdb import command.

• Importing from correctly formatted JSON data.

• Importing from another database.

• Using the bulk_extractor hashdb scanner.

• Using the hashdb library through the Python or C++ interface.

A database may contain blacklist hashes from multiple source domains, where a domain
is called a repository. The repository name indicates the provenance of the dataset. It
is its description information, such as “Company X’s intellectual property files”.

2.10 Scanning

There are multiple ways users can scan for matches in a block hash database:

• Using one of the hashdb tool scan commands to scan from a media image, list,
stream, or specific hash.

• Using one of the hashdb library Python or C++ scan interfaces.

• Using the bulk_extractor hashdb scanner Scan function.

Additionally, there are several output modes for receiving scan matches. These modes
provide varying levels of detail and speed.

14

2.11 Contents of a Hash Database

Each hashdb database is contained in a directory called <databasename>.hdb and con-
tains a number of files. These files are:

lmdb_hash_data_store/data.mdb
lmdb_hash_data_store/lock.mdb
lmdb_hash_store/data.mdb
lmdb_hash_store/lock.mdb
lmdb_source_data_store/data.mdb
lmdb_source_data_store/lock.mdb
lmdb_source_id_store/data.mdb
lmdb_source_id_store/lock.mdb
lmdb_source_name_store/data.mdb
lmdb_source_name_store/lock.mdb
log.txt
settings.json

These files include several data store directories and files, a settings file, and a log file:

• lmdb store files
The lmdb store files encode all the block hashes, source files, and related infor-
mation that are in the database. These filenames start with the prefix lmdb.

• settings.json
This file contains the settings requested by the user when the block hash database
was created. Database settings are described in subsection 2.12. This file also
contains the internal hashdb settings version used to help hashdb identify whether
a database is compatible with this version of hashdb. The settings.json file with
the default settings looks like this:

{"settings_version":3, "byte_alignment":512, "block_size":512,
"max_count":100000, "max_sub_count":50, "hash_prefix_bits":28,
"hash_suffix_bytes":3}

• log.txt
Every time a command is run that changes the content of the database, informa-
tion about the change is appended to this log. Each entry includes the command
name, information about hashdb including the command typed and how hashdb
was compiled, information about the operating system hashdb was just run on,
timestamps indicating how much time the command took, and the specific hashdb
changes applied.

Listing 1 shows an example log file containing two entries, one for when the hash
database was created, and one for when data was ingested into the database.

• timestamp.json
timestamp.json is not formally part of the hashdb database. It is created by
the hashdb tool performance analysis commands described in subsection 3.6.
This file is replaced rather than appended to. Timestamp syntax is described in
Section 6.

2.12 Database Settings

Function and performance of a hashdb database is set using configurable settings:

15

Listing 1: An example log.xml log file showing a database creation entry and a datase
ingest entry
command: "hashdb create KittyMaterial.hdb"
hashdb version: 3.0.0-alpha -9
username: bdallen
start time 2016 -09 -08 T22 :57:49Z
{"name ":" begin","delta ":"0.000365" ," total ":"0.000365"}
{"name ":"end","delta ":"0.000018" ," total ":"0.000392"}
command: "hashdb ingest KittyMaterial.hdb ../ KittyMaterial"
hashdb version: 3.0.0-alpha -9
username: bdallen
start time 2016 -09 -08 T22 :58:07Z
{"name ":" begin","delta ":"0.000326" ," total ":"0.000326"}
hashdb changes:
hash_data_source_inserted: 401713
hash_data_offset_inserted: 401732
hash_prefix_inserted: 401316
hash_suffix_inserted: 401598
hash_count_changed: 88
hash_not_changed: 46
source_data_inserted: 88
source_data_changed: 88
source_id_inserted: 88
source_id_already_present: 401820
source_name_inserted: 88
{"name ":"end","delta ":"9.397511" ," total ":"9.397846"}

• Byte alignment
Byte alignment is an optimization parameter created to help reduce the size of the
database. To be optimal, this value should be large, but it must be divisible by
the step size used when importing hashes. If you only scan storage devices, use
the sector size of the storage device since this is the smallest value that data in
storage devices can align to, specifically, 512.

• Block size
The size of data blocks the database expects to store. Block hashes are calculated
from data of this size. The default is 512.

• Max count
The maximum number of source offsets to store for a single hash value, default
100,000. If source information is not interesting, use a low value or even 0 to not
store any actual source offset values.

• Max sub-count
The maximum number of source offsets to store for each source contributing to a
single hash value, default 50. If source information is not interesting, use a low
value or even 0 to not store any actual source offset values. Due to internal design
limitations associated with LMDB, the largest maximum allowed is 50.

• Hash prefix bits
The number of bits of the hash prefix to use as the key in the store. The idea
is to select a value given the size of the database so that the average number of
hashes with this prefix is slightly greater than 0, for example 20. For example if

16

you expect 5 billion hashes, you might select 28 because 5/228 = 18.6, which is
near 20.

• Hash suffix bytes
The number of bytes of the hash suffix to store in the set of values of hash suffixes
for this hash key. The idea is to store as few bytes as possible while minimizing
false positives. For example if you expect 5 billion hashes, you might select 28
prefix bits and 3 suffix bytes because 5/2((28)+8∗(3)) = 5/252 = 0.00011% false
positive rate, about 1 in 1 million.

2.13 Maintaining Database Integrity

A hashdb hash database can be damaged when operations that modify it are aborted.
Re-running the operation may not fully add missing data. Although some data may be
lost, the database should remain operational.

A hashdb hash database can also be damaged by running a command that should not
have been run such as ingesting incorrect files or adding an incorrect database. Some
operations can be “rolled out” using database manipulation commands.

Each hashdb hash database includes an audit log file that records all commands issued
that modify that database. You may inspect this audit log to verify that all issued
commands are acceptable and that all issued commands have completed. Audit log files
are described in subsection 2.11.

Please backup databases that cannot readily be recreated.

3 Running the hashdb Tool

The core capabilities provided by hashdb involve creating and maintaining a database of
hash values and scanning media for those hash values. To perform those tasks, hashdb
users need to start by building a database (if an existing database is not available for use).
Users then import hashes using hashdb tool commands, the hashdb bulk_extractor
scanner, or through the hashdb library API, and then possibly merge or subtract hashes
to obtain the desired set of hashes to scan against. Users then scan for hashes that
match. Additional commands are provided to support statistical analysis, performance
tuning and performance analysis.

This section describes use of the hashdb tool commands, along with examples, for per-
forming these tasks. For more examples of command usage, please see section 5.
For a hashdb quick reference summary, please see Appendix A, also available at
http://digitalcorpora.org/downloads/hashdb/hashdb_quick_reference.pdf.

3.1 Creating a New Hash Database

A hash database must be created before hashes can be added to it. Syntax for creating
a hash database is shown in Table 1. Configurable settings associated with the database
is shown in Table 2 and described in Subsection 2.12.

17

http://digitalcorpora.org/downloads/hashdb/hashdb_quick_reference.pdf

Table 1: Command for Creating Hash Databases

Command Usage Description
create create [-b <block size>]

[-a <byte alignment>]
[-m <max count:max sub-count>]
[-t <hash prefix bits:hash
suffix bytes>] <hashdb.hdb>

Creates a new hash
database with the given
configuration settings.

Table 2: Database Settings

Option Verbose Option Specification
-b --block_size=block_size Specifies the block size

in bytes used to gener-
ate the hashes that will
be stored and scanned
against. Default is 512
bytes.

-a --byte_alignment=byte_alignment Specifies the byte align-
ment in bytes used to
calculate hashes along.
Default is 512 bytes.

-m --max_counts=max count:max sub-count Specifies the maximum
number of total offsets
and sub-offsets allowed
for a hash.

-t --tuning=prefix bits:suffix bytes Specifies the number of
prefix bits and suffix
bytes to use for com-
pacting the database.

3.1.1 create

Create a new hash database configured with provided or default settings.

Example
To create an (empty) hash database named demo.hdb, type the following command:

� hashdb create demo.hdb

The above command will create a database with all of the default hash database set-
tings. Most users will not need to change these settings. Users can specify either the
option and value or the verbose option value for each parameter along with the create
command, as in:

� hashdb create --max_counts=100:10 demo.hdb
� hashdb create -m 100:10 demo.hdb

The above two commands produce identical results, creating the database demo.hdb
that will record a maximum of 10 offsets per source but no more than 100 offsets total

18

across multiple sources.

3.2 Importing and Exporting

Hash databases may be imported to in several ways. Syntax for commands that import
and export hashes is shown in Table 3. Import and export options are shown in Table
4.

Note that there are other ways to populate a database besides these listed here, including
using other hash databases (discussed in subsection 5.4), by using the bulk_extractor
hashdb scanner (discussed in subsection 5.3), and through the use of the import capa-
bility provided by the hashdb library API (discussed in subsection 5.2).

Table 3: Commands for Importing into and Exporting Hash Databases

Command Usage Description
ingest ingest [-r <repository name>]

[-w <whitelist.hdb>]
[-s <step size>] [-x <rel>]
<hashdb.hdb> <source directory>

Computes and ingests
block hashes from files
under the source di-
rectory into the hash
database as directed by
options.

import_tab import_tab [-r <repository name>]
<hashdb.hdb> <tab.txt>

Imports values from
the tab-delimited file
into the hash database.
This command accepts
a dash (-) as a file-
name to allow terminal
streaming from stdin.

import import <hashdb.hdb> <hashdb.json> Imports values from the
JSON file into the hash
database. This com-
mand accepts a dash (-)
as a filename to allow
terminal streaming from
stdin.

export export [-p <begin:end>] <hashdb.hdb>
<hashdb.json>

Exports the hash
database to the JSON
file. This command
accepts a dash (-) as
a filename to allow
terminal streaming to
stdout.

3.2.1 ingest

The ingest command computes and ingests hashes from files under the source direc-
tory, including files in subdirectories. Files with .E01 extensions are treated as E01 files.

19

Table 4: Options for Importing and Exporting Hash Databases

Option Verbose Option Specification
-r --repository_name=repository name Specifies the name to

associate the imported
hashes with. If not pro-
vided, the source file-
name entered is used as
the repository name.

-w --whitelist_dir=whitelist directory If a whitelist database
is provided, matching
hashes are marked with
w in their block label.

-s --step_size=step size The increment to step
along for calculating
block hashes. The step
size must be compatible
with the byte alignment
defined in the database,
specifically the byte
alignment must be
divisible by the byte
alignment.

-x --disable_processing=rel Use this option to dis-
able specific process-
ing, specifically: r dis-
ables recursively pro-
cessing embedded data,
e disables calculating
block entropy, and l dis-
ables calculating block
labels.

-p --part_range=begin:end Use this option to se-
lect a range of block
hashes by hexadecimal
value rather than select-
ing all block hashes.

If some of the content to be ingested already exists, specifically, if block hashes have
already been ingested for a given file hash, it will not be ingested again, but the filename
and repository name will be stored to cite the source reference.

Example
To import block hashes from a directory of blacklist sources, type the following command:

� hashdb ingest -r demo_repository demo.hdb demo_blacklist_dir

In the above command the option -r is used along with the repository name demo_repository
to indicate the repository source of the block hashes being imported into the database.
The repository name is used to keep track of the sources of hashes. By default, the

20

repository name used is the text repository_ with the filename of the file being im-
ported from appended after it.

The ingest command in the above example imports block hashes from files in the
demo_blacklist_dir directory into the database demo.hdb. When the Kitty Material
demo dataset available at http://digitalcorpora.org/corpora/scenarios/2009-m57-
patents/KittyMaterial/import is imported, hashdb prints output to the command line
to indicate that hashes have been inserted into database demo.hdb. Listing 13 shows an
example output of changes from running an ingest command.

Also, database log file log.txt is updated to show that a set of hash blocks have just
been inserted. The log in Figure 1 was generated from similar create and import ac-
tions. The contents of log files is described in subsection 2.11.

Users may prefer to run statistical commands such as this to get information about the
contents of the database (and confirm that values were inserted):

� hashdb size demo.hdb

3.2.2 import_tab

The import_tab command imports values from the tab-delimited file into the hash
database. Note that tab-delimited files are expected to contain block hashes calculated
from 512-byte blocks along 512-byte boundaries. Tab-delimited files are described in
subsection 6.2.

hashdb checks to see if the source file has already been imported and does not import
block hashes from sources imported in previous sessions.

3.2.3 import

The import command imports values from an exported database. Data is in JSON
format as described in subsection 6.3. If source information for a block hash is already
present, it will not be re-imported.

3.2.4 export

The export command exports values or a range of values from a hashdb block hash
database. Data is in JSON format as described in subsection 6.3. The following
example exports everything in database demo.hdb to file, demo.json:

� hashdb export demo.hdb demo.json

This example exports everything in database demo.hdb in two parts:

� hashdb export -p 00:80 demo.hdb demo_part_1.json
� hashdb export -p 80:ffffffffffffffffffffffffffffffff demo.hdb demo_part_2.json

21

http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/KittyMaterial/import
http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/KittyMaterial/import

3.3 Database Manipulation

Databases may need to be merged together or common hash values may need to be sub-
tracted out in order to produce a specific set of blacklist data to scan against. Syntax for
commands that manipulate hash databases is shown in Table 5. Destination databases
are created if they do not exist yet.

3.3.1 add

Add a database to another database.

3.3.2 add_multiple

Add multiple databases into a destination database. This can be faster than using add
multiple times because the destination is built in lexicographical order.

3.3.3 add_repository

Add a database to another database but only when the repository name matches. Use
this to copy everything belonging to a repository to a new database.

3.3.4 add_range

Add a database to another database but only when the hash source count falls within
the given range. Use this to isolate hashes that appear with a certain frequency or to
remove hashes that are too popular.

3.3.5 intersect

Add hashes to a destination database when the hash and source are common. Use this
to find the intersection between two databases.

3.3.6 intersect_hash

Add hashes to a destination database when the hash is common, even if the referenced
sources are different. Use this to find hashes that intersect between two databases even
if their sources do not intersect.

3.3.7 subtract

Add hashes to a destination database when the hash and source is in the first database
but not in the second. Use this to ensure that hashes in the second database do not
appear in the new destination database.

3.3.8 subtract_hash

Add hashes to a destination database when the hash is in the first database but not in
the second, even if the referenced sources are different. Use this to ensure that hashes
in the second database do not appear in the new destination database even when the
sources are different.

22

Table 5: Commands to Manipulate Hash Databases

Command Usage Description
add add <source db>

<destination db>
Copies all of the hashes
from source db to desti-
nation db

add_multiple add_multiple <source db1>
<source db2> ...
<destination db>

Adds databases source
db1, source db2, etc. to
destination db

add_repository add_repository <source db>
<destination db>
<repository name>

Adds source db to
destination db but only
when the repository
name matches

add_range add_range<source db>
<destination db> <m:n>

Copies hash values from
source db into destina-
tion db that have source
counts within range m
and n, inclusive

intersect intersect <source db1>
<source db2> <destination db>

Copies hash values com-
mon to both source db1
and source db2 into
destination db where
sources match

intersect_hash intersect_hash <source db1>
<source db2> <destination db>

Copies hash values com-
mon to both source db1
and source db2 into des-
tination db even if their
sources are different.

subtract subtract <source db1>
<source db2> <destination db>

Copies hash values
found in source db1 but
not in source db2 into
destination db where
sources match

subtract_hash subtract <source db1>
<source db2> <destination db>

Copies hash values
found in source db1
but not in source db2
into destination db even
if their sources are
different.

subtract _reposi-
tory

subtract_repository
<source db1> <destination db2>
<repository namedb>

Adds source db1 to
destination db2 unless
the repository name
matches

3.3.9 subtract_repository

Add a database to another database but only when the repository name does not match.
Use this to ensure that hashes in the new destination database do not include the
repository being subtracted. If information is also contributed from another repository,

23

the information will still be copied but the reference to the removed repository will not
be copied.

3.4 Scan Services

hashdb can be used to determine if a file, directory or media image has content that
matches previously identified content. This capability can be used, for example, to de-
termine if a set of files contains a specific file excerpt or if a media image contains a video
fragment. Forensic investigators can use this feature to search for blacklisted content.
Syntax for scan service commands is shown in Table 6. Scan service options are shown
in Table 7.

Table 6: Commands that Provide Scan Services

Command Usage Description
scan_list scan_list [-j e|o|c|a] <hashdb>

<hash list file>
Scans the hashdb for
hashes that match
hashes in the hash
list file and prints out
matches

scan_hash scan_hash [-j e|o|c|a] <hashdb>
<hash value>

Scans the hashdb for
the specified hash value
and prints out whether
it matches

scan_media scan_media
[-s <step size>] [-j e|o|c|a]
[-x <r>] <hashdb> <media media>

Scans the hashdb for
hashes that match
hashes in the media
image and prints out
matches.

3.4.1 scan_list

Scan for hashes in the list of hashes. List input syntax is described in subsection 6.7.
Scan output is described in subsection 6.4. This command accepts a dash (-) as a
filename to allow terminal streaming from stdin.

3.4.2 scan_hash

Scan for the specified hash. The hash to scan for must be provided in hexadecimal
format.

3.4.3 scan_media

Scan the specified media image for matching hashes.

Example
To scan, first identify the media that you would like to scan. For this example, we down-
load and use the demo media image available at http://digitalcorpora.org/corpora/

24

 http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01
 http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01

Table 7: Options for Scanning from a Media Image

Option Verbose Option Specification
-s --step_size=step size The increment to step

along for calculating
block hashes. The step
size must be compatible
with the byte alignment
defined in the database,
specifically the byte
alignment must be
divisible by the byte
alignment.

-j --json_scan_mode=e|o|c|a Select a mode, one
of expanded, expanded
optimized, count only,
approximate count. De-
fault is o.

-x --disable_processing=r Use this option to dis-
able specific process-
ing, specifically: r dis-
ables recursively pro-
cessing embedded data.

scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01
which contains matching Kitty material.

Then identify the existing hash database that will be used to search for hash value
matches. We’ll use the database demo.hdb that we created from Kitty material in the
previous section, containing block hash values calculated from pictures and videos of cats.

Finally, run the hashdb scan command to scan for blocks in the media that match block
hashes in the database:

� hashdb scan_media demo.hdb jo-favorites-usb-2009-12-11.E01 > matches.json

This command tells hashdb to scan media image jo-favorites-usb-2009-12-11.E01
and try to match the values found in the local database demo.hdb, putting match data
in file matches.json. An example match might look like this:
2543104 1d7379fd4d5cf676a9d4de1e48337e71 {"block_hash":
"1d7379fd4d5cf676a9d4de1e48337e71","k_entropy":4880,
"block_label":"","count":1,"source_list_id":1193146442,"sources":
[{"file_hash":"1dd00f2e51aeebe7541cea4ade2e20b5","filesize":1549288,
"file_type":"","zero_count":0,"nonprobative_count":10,"name_pairs":
["/home/bdallen/KittyMaterial","/home/bdallen/KittyMaterial/
HighQuality/DSC00003.JPG"]}],"source_offsets":
["1dd00f2e51aeebe7541cea4ade2e20b5",1,[0]]}

Users may be put off by the quantity of matches incurred by low-entropy data in their
databases such as number tables or metadata header blocks from files that are otherwise
unique. Database manipulation commands, subsection 3.3, can mitigate this, for
example:

25

 http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01
 http://digitalcorpora.org/corpora/scenarios/2009-m57-patents/drives-redacted/jo-favorites-usb-2009-12-11.E01

• Use the “subtract” command to remove known whitelist data created from sources
such as “brand new” operating system media images and the NSRL.

• Alternatively, use the “add_range” command to copy all hash values that have
been imported some number of times, for example, exactly once.

3.5 Statistics

Various statistics are available about a given hash database including the size of a
database, where its hashes were sourced from, a histogram of its hashes, and more.
Table 8 shows syntax for the statistics commands. Statistics options are shown in Table
9.

Table 8: Commands that provide Statistics about Hash Databases

Command Usage Description
size size <hashdb> Prints out size infor-

mation relating to the
database.

sources sources <hashdb> Prints source informa-
tion for all sources in the
database.

histogram histogram <hashdb> Prints a hash distribu-
tion for the hashes in
the hashdb.

duplicates duplicates <hashdb> <number> Prints out hashes in
the database that are
sourced the given num-
ber of times.

hash_table hash_table <hashdb>
<hex file hash>

Prints hashes associ-
ated with the specified
source.

read_media read_media <media image file>
<offset> <count>

Prints count raw bytes
from a media image file
starting at the given off-
set.

Table 9: Options for Commands that Provide Statistics

Option Verbose Option Specification
-j --json_scan_mode=e|o|c|a Select a mode, one

of expanded, expanded
optimized, count only,
approximate count. De-
fault is o.

26

3.5.1 size

Prints size information about the given database. Size values are specific to the under-
lying database storage implementation and indicate how large the parts of the database
are.

To find the size of various data stores in hash database example.hdb, type the following:

� hashdb size examle.hdb

The above command prints the size of various data stores within the database in JSON
format.

3.5.2 sources

Prints out all source file references that have contributed to this database including
repository names and filenames.

3.5.3 histogram

Prints a hash distribution of the hashes in the given database, see subsection 6.10 for
output syntax.

3.5.4 duplicates

Prints out hashes in the database that are sourced the given number of times.

3.5.5 hash_table

Prints out hashes associated with the specified source identified by the source file hexdi-
gest.
To obtain a list of hashes in example.hdb associated with the source file identified by
hexcode 16d75027533b0a5ab900089a244384a0, type the following:

� hashdb hash_table example.hdb 16d75027533b0a5ab900089a244384a0

3.5.6 read_media

Prints raw bytes from the given media image. Note that these bytes are often not
printable.

3.6 Performance Analysis

Performance analysis commands for analyzing hashdb performance are shown in Table
10. Performance analysis options are shown in Table 11. Timing data is placed in file
timestamp.json, replacing any previous content.

3.6.1 add_random

Add random hashes, leaving timing data in log.xml.

3.6.2 scan_random

Scan random hashes, leaving timing data in log.xml. Although this command does not
produce output, the scan mode used impacts timing.

27

Table 10: Commands that Support hashdb Performance Analysis

Command Usage Description
add_random add_random

-r [<repository name>]
<hashdb.hdb> <count>

Adds count random
hashes to the given
database, creating tim-
ing data in the log.xml
file.

scan_random scan_random [-j e|o|c|a]
<hashdb.hdb>

Scans random hashes in
the given database, cre-
ating timing data in the
log.xml file.

add_same add_same
-r [<repository name>]
<hashdb.hdb> <count>

Adds count same hashes
to the given database,
creating timing data in
the log.xml file.

scan_same scan_same [-j e|o|c|a]
<hashdb.hdb>

Scans count same
hashes in the given
database, creating tim-
ing data in the log.xml
file.

Table 11: Options for Commands that Support Performance Analysis

Option Verbose Option Specification
-j --json_scan_mode=e|o|c|a Select a mode, one

of expanded, expanded
optimized, count only,
approximate count. De-
fault is o.

3.6.3 add_same

Add the same hash, leaving timing data in log.xml.

3.6.4 scan_same

Scan the same hash, leaving timing data in log.xml. Although this command does not
produce output, the scan mode used impacts timing.

4 Tools that use hashdb

SectorScope, the SectorScope Autopsy Plug-in, and the bulk_extractor hashdb scanner
use hashdb.

4.1 SectorScope

The SectorScope tool provides a GUI for analyzing data associated with block hash
matches found on a media image. An example screenshot of the main window of Sec-
torScope showing a histogram of matches on a media image is shown in Figure 7. Sec-

28

Figure 7: Example screenshot of the SectorScope tool

torScope also provides interfaces for building and scanning against hashdb databases.
Please see https://github.com/NPS-DEEP/NPS-SectorScope/wiki for more informa-
tion on SectorScope.

4.2 The SectorScope Autopsy Plug-in

SectorScope provides an Autopsy plug-in for scanning for fragments of previously iden-
tified files. Autopsy is currently only available on Windows systems. This section
describes how to set up the SectorScope Autopsy plug-in.

4.2.1 Installing the SectorScope Plug-in

The SectorScope Windows installer installs the requisite .nbm Autopsy plug-in module
onto the desktop. Please follow these steps to install this module:

1. Open Autopsy. From the Autopsy menu, select Tools | Plugins.

2. Open the Downloaded tab and click the Add Plugins... button.

3. From the Add Plugins window, navigate to the .nbm module file that was installed
onto the desktop, and open it.

29

https://github.com/NPS-DEEP/NPS-SectorScope/wiki

4. Click Install and follow the wizard. Please note that it may be difficult to replace
an old module of NPS-Autopsy-hashdb already installed in Autopsy. In the un-
likely case that error Some plugins require plugin org.jdesktop.beansbinding
to be installed appears, it may be necessary to uninstall and reinstall Autopsy.

4.2.2 Configuring the SectorScope Plug-in

The path to the hashdb database to scan against must be configured:

1. Start a new case, File | New Case..., fill in the Case Information fields, and
click Next.

2. Fill in Case Information and click Finish.

3. For Add Data Source (1 of 3), put in a media image for Autopsy to process and
click Next.

4. For Add Data Source (2 of 3), select checkboxes as desired, then click on NPS-SectorScope
text to configure the path to your hashdb database to scan against. Currently a file
chooser is not available, so please type in the full path, for example: C:\Users\me\my_hashdb.hdb.
Click Next.

5. For Add Data Source (3 of 3) click Finish. When the NPS-SectorScope module
begins processing, Autopsy will display "NPS-SectorScope ..." as bulk_extractor
runs, which may take up to several hours. Unfortunately, bulk_extractor progress
is not currently indicated. For diagnostics: please see if progress text is appearing
in the generated bulk_extractor\report.xml file and in the generated log file or
try running the scan manually.

4.3 bulk_extractor

bulk_extractor is an open source digital forensics tool that extracts features such as
email addresses, credit card numbers, URLs and other types of information from dig-
ital evidence files. It operates on disk media images, files or a directory of files and
extracts useful information without parsing the file system or file system structures.
For more information on how to use bulk_extractor for a wide variety of applica-
tions, refer to the separate publication The bulk_extractor Users Manual available at
http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf [2].

In particular, a hashdb bulk_extractor scanner is available which may be used to
import block hashes into a new hash database and to scan for hashes against an ex-
isting hash database. Currently, hashdb requires a newer build of bulk_extractor
than is available on the bulk_extractor site. Please see the hashdb Wiki page at
https://github.com/NPS-DEEP/hashdb/wiki for information on obtaining a version of
bulk_extractor that is compatible with the current version of hashdb.

Options that control the hashdb scanner are provided to bulk_extractor using "-S name=value"
parameters. Example syntax for the bulk_extractor hashdb scanner is shown in Table
12. Scanner options are described in Table 13.

When importing, the new database of imported hashes is created in the output direc-
tory at hashdb.hdb. When scanning, matches are written in the output directory at file

30

http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf
https://github.com/NPS-DEEP/hashdb/wiki

identified_blocks.txt with one match per line, as described in section 6) Listing 8.

Table 12: bulk_extractor hashdb Scanner Commands

Goal Example Description
import files bulk_extractor -E hashdb

-S hashdb_mode=import
-o outdir1 -R my_directory

Import hashes from
directory into out-
dir1/hashdb.hdb

import media bulk_extractor -E hashdb
-S hashdb_mode=import
-o outdir1 my_media_image1

Import hashes from me-
dia image into out-
dir1/hashdb.hdb

scan media bulk_extractor -E hashdb
-S hashdb_mode=scan
-S hashdb_scan_path
=outdir1/hashdb.hdb -o outdir2
my_media_image2

Scan media image for
hashes matching hashes
in outdir1/hashdb.hdb

Table 13: bulk_extractor hashdb Scanner Options

Option Default Specification
hashdb_mode none The mode for the scanner, one of

[none|import|scan]. For “none”, the
scanner is active but performs no ac-
tion. For “import”, the scanner imports
block hashes. For “scan”, the scanner
scans for matching block hashes.

hashdb_block_size 512 Block size, in bytes, used to generate
hashes.

hashdb_byte_alignment 512 byte alignment, in bytes. Scans and im-
ports along sector boundaries.

hashdb_step_size 512 step size, in bytes. Scans and imports
along this step value.

hashdb_scan_path The file path to a hash database to scan
against. Valid only in scan mode. No
default provided. Value must be speci-
fied if in scan mode.

hashdb_repository_name default_
repository

Selects the repository name to attribute
the import to. Valid only in import
mode.

hashdb_max_feature_file_
lines

0 The maximum number of feature lines
to record or 0 for no limit. Valid only
in scan mode.

5 Use Cases for hashdb

There are many different ways to utilize the functionality provided by the hashdb tool.
In this section, we highlight some of the most common uses of the system.

31

5.1 Querying for Source or Database Information

Users can scan a hash database directly using various querying commands. Those com-
mands are outlined in Table 6. The “scan” command allows users to search for hash
blocks.

5.2 Writing Software that works with hashdb

hashdb provides Python and C++ APIs that can manage all aspects of a hash database
including importing and scanning [see Section 7 for information on using these APIs].
Other software programs can use these APIs to access database capabilities. The file
hashdb.hpp found in the src directory contains the complete specification of the API.
That complete file is also contained in Appendix C of this document. The two key fea-
tures provided by the API include the ability to import values into a hash database and
the ability to scan media for any values matching those in a given hash database. The
bulk_extractor program uses the hashdb API to implement both of these capabilities.

5.3 Scanning or Importing to a Database Using bulk_extractor

The bulk_extractor hashdb scanner allows users to query for fragments of previously
encountered hash values and populate a hash database with hash values. Options that
control the hashdb scanner are provided to bulk_extractor using the “-S name=value”
command line parameters. When bulk_extractor executes, the parameters are sent
directly to the scanner.

For example, the following command runs the bulk_extractor hashdb scanner in im-
port mode and adds hash values calculated from disk media image my_media_image to
a hash database:

� bulk_extractor -e hashdb -o outputDir -S hashdb_mode=import my_media_image

Note, bulk_extractor will place feature file and other output not relevant to the hashdb
application in the “outputDir” directory. When using the import command, the output
directory will contain a newly created hash database called hashdb.hdb. That database
can then be copied or added to a hash database in another location.

5.4 Updating Hash Databases

hashdb provides users with the ability to manipulate the contents of hash databases.
The specific command line options for performing these functions are described in Table
5. hashdb databases are treated as sets with the add, subtract and intersect commands
basically using add, subtract and intersect set operations. For example, the following
command will copy all non-duplicate values from demo.hdb into demo_dedup.hdb by
copying all values with a count less than or equal to one:

� hashdb add_range demo.hdb demo_dedup.hdb :1

Whenever a database is created or updated, hashdb updates the file log.xml, found in
the database’s directory with information about the actions performed.

32

After each command that changes a database, statistics are writen in the log.xml file
and to stdout. Table 19 shows all of the changes tracked in the log file along with their
meaning. The value of each change statistic is the number of times the event happened
during the command.

5.5 Exporting Hash Databases

Users can export hashes from a hash database to a JSON export file using the “export”
command [see Section 6 for information on JSON syntax]. For example, the following
command will export the demo.hdb database to the file demo.json:

� hashdb export demo.hdb demo.json

5.6 Sharding Hash Databases

A block hash database may be sharded into multiple separate databases by using the -p
option of the “export” command to export parts by block hash range, and then importing
each range into individual shard databases.

6 hashdb Input/Output Syntax

Many of the hashdb commands and API interfaces require or emit data. This section
describes the syntax used and required by hashdb commands and API interfaces.

6.1 General Output Conventions

• Expected output
Expected output is printed to stdout, for example the hashdb create command
will respond with New database created.

• JSON output
All JSON output is printed to stdout.

• Status
Some commands generate status information. This information is prefixed with
a # character and a space, and may be treated as a comment. For example the
hashdb ingest command will produce status including files processed, progress,
and changes made to the database. The comment identifier separates status from
JSON content.

• Errors
Errors are is printed to stderr, for example the hashdb create command might
fail with the message Unable to create new hashdb database at path.

• Warnings
Warnings are printed to stderr. Warnings may result when a command cannot
fully complete, for example when JSON input syntax is invalid or when part of an
input file cannot be read.

33

Listing 2: Example tab-delimited import file
tab -delimited import file
<file hexdigest > <tab > <block hash > <tab > <index >
fac7051447c781b69125994c5d125637 3b6b477d391f73f67c1c01e2141dbb17 1
fac7051447c781b69125994c5d125637 89 a170b6b9a948d21d1d6ee1e7cdc467 2
fac7051447c781b69125994c5d125637 f58a09656658c6b41e244b4a6091592c 3

Listing 3: Example JSON source data used during import/export
{

"file_hash ":"3 bf06fd991c312bd852c5f7b84d78174",
"filesize ":5712046 ,
"file_type ":"",
"zero_count ":3860 ,
"nonprobative_count ":32,
"name_pairs ":["/ home/bdallen/KittyMaterial",

"/home/bdallen/KittyMaterial/Cat.mov"]}
}

6.2 Tab-delimited Import File

The import_tab command imports hashes from tab delimited files. The tab-delimited
import file consists of hash lines separated by carriage returns, where each line consists
of a filename followed by a tab followed by the file hash followed by a 512-byte sector
index that starts at 1. Comment lines are allowed by starting them with the # character.
An example tab-delimited file is shown in Listing 2.

6.3 Import/Export Syntax

The import and export commands and API interfaces communicate source data and
block hash data using JSON syntax.

6.3.1 Source Data

Source data defines information about a source. Source data is identified by the file hash
of the source. An example source data line is shown in Listing 3. Fields are described
in Table 14.

6.3.2 Block Hash Data

Block hash data is identified by the file block hash. An example block hash line is shown
in Listing 4. Fields are described in Table 15.

6.4 Scan Data

When hash matches are found, hashdb returns data in JSON format. Due to varying
requirements for speed and completeness, several options are available. This section

34

Table 14: Fields used in JSON source data

Field Meaning
file_hash The hexdigest of the source file containing the block

hash
filesize The size, in bytes, of the source file
file_type A classification of what type of file the source file is
zero_count The number of blocks in the source that have all bytes

in the block equal to zero
nonprobative_count The number of blocks in the source that are consid-

ered to be nonprobative
name_pairs An array of source name, filename pairs associated

with this source

Listing 4: Example JSON block hash data used during import/export
{

"block_hash ":"1 d7379fd4d5cf676a9d4de1e48337e71",
"k_entropy ":4880 ,
"block_label ":"",
"source_offsets ":["1 dd00f2e51aeebe7541cea4ade2e20b5 ",1,[0]]}

}

Table 15: Fields used in JSON block hash data

Field Meaning
block_hash A block hash hexdigest
k_entropy The entropy value calculated for the block, scaled up

by 1, 000

block_label A label describing the type of data within the block.
The block label may include information that it
matched a whitelist database during import. The
entropy and block label fields may be used together
to estimate that a block might be nonprobative

source_offsets An array of source offset information consisting of
triplets of source hash, sub-count, and any recorded
offsets for each matching source

describes the JSON output options available for hash matches.

6.4.1 Expanded Hash

The returned JSON data contains all the information about a matched hash and the
sources containing the hash that matched, even if it has already been returned in a
previous scan. An example of expanded JSON output formatted with line breaks added
for readability is shown in Listing 5. Fields are described in Table 16.

35

Listing 5: Example JSON block hash expanded data output from a scan match, with
line breaks added for readability
{

"block_hash ":"1 d7379fd4d5cf676a9d4de1e48337e71",
"k_entropy ":4880 ,
"block_label ":"",
"count":1,
"source_list_id ":1193146442 ,
"sources ":[{

"file_hash ":"1 dd00f2e51aeebe7541cea4ade2e20b5",
"filesize ":1549288 ,
"file_type ":"",
"zero_count ":0,
"nonprobative_count ":10,
"name_pairs ":[

"/home/bdallen/KittyMaterial",
"/home/bdallen/KittyMaterial/HighQuality/DSC00003.JPG"]

}],
"source_offsets ":["1 dd00f2e51aeebe7541cea4ade2e20b5 ",1,[0]]

}

Table 16: Fields used in JSON scan data

Field Meaning
block_hash The hexdigest hash of the block
k_entropy The entropy value calculated for the block, scaled up

by 1, 000

block_label A label describing the type of data within the block
source_list_id A source list ID calculated as a CRC of the source

file hashes associated with the block hash
sources An array of source data for each matching source
file_hash The hexdigest hash of a matching source
filesize The size, in bytes, of a matching source
file_type A classification of what type of file a matching source

is
zero_count The number of blocks in a matching source that have

all bytes in the block equal to zero
nonprobative_count The number of blocks in a matching source that are

considered to be nonprobative
name_pairs An array of repository name, filename pairs associ-

ated with a matching source
source_offsets An array of source offset information consisting of

triplets of source hash, sub-count, and any recorded
offsets for each matching source

6.4.2 Expanded Hash, Optimized

The returned JSON data contains all the information about a matched hash and the
sources containing the hash that matched in the first match, but hash and source meta-
data is not returned more than once. This optimization reduces the amount of data
returned during the scan, but the user must remember associated hash and source

36

Listing 6: Example JSON block hash data count output from a scan match, with line
breaks added for readability
{

"block_hash ": "3 b6b477d391f73f67c101e2141dbb17",
"count": 501

}

Listing 7: Example JSON block hash data approximate count output from a scan
match, with line breaks added for readability
{

"block_hash ": "3 b6b477d391f73f67c101e2141dbb17",
"approximate_count ": 500

}

metadata as it is returned because it is not returned in subsequent matches. An ex-
ample output of a subsequent match of the same hash might be: {"block_hash":
"3b6b477d391f73f67c1c01e2141dbb17}.

6.4.3 Hash Count

Only the count field is returned, indicating the number of sources cited in each match.
JSON output contains the hash and the count as shown in example Listing 6. This
capability is an optimization provided for users who do not need other hash information.

6.4.4 Approximate Hash Count

Only an approximate count field is returned, and it is possible for the count to be
wrong. This capability is an optimization provided for users who do not need other
hash information and can accept count values that are not exact. This is the fastest
scan option since it only reads the hash store. For information on the hash store, see
Section 8. JSON output contains the hash and the approximate count as shown in
example Listing 7.

6.5 Scan Data Output from Tools

The scan commands provided by the hashdb tool and the bulk_extractor hashdb scan-
ner print one line of output per match. This output consists of the byte offset, which
may include a recursion path, a tab, the hash hexcode, a tab, the expanded hash JSON
data, and a carriage return. An example of a scan match is shown in Listing 8.

6.6 Scan Stream Interface Data

Scan stream interface data consists of packed binary strings of unscanned input data
and packed binary strings of scanned output data. Each contains an array of data as
follows:

37

Listing 8: Example output from a scan match
2543104 1d7379fd4d5cf676a9d4de1e48337e71 {" block_hash ":"1 d7379fd4d
5cf676a9d4de1e48337e71 "," k_entropy ":4880 ," block_label ":""," count ":1," sour
ce_list_id ":1193146442 ," sources ":[{" file_hash ":"1 dd00f2e51aeeb e7541cea4a
de2e20b5","filesize ":1549288 ," file_type ":""," zero_count ":0," nonprobative_
count ":10 ," name_pairs ":["/ home/bdallen/KittyMaterial ","/home/bdallen/Kitt
yMaterial/HighQuality/DSC00003.JPG "]}]," source_offsets ":["1 dd00f2e51aeebe
7541 cea4ade2e20b5 ",1 ,[0]]}

Listing 9: Example scan list input file
Scan list input file
<offset > <tab > <block hash hexdigest >
0 3b6b477d391f73f67c1c01e2141dbb17
512 89 a170b6b9a948d21d1d6ee1e7cdc467
1024 f58a09656658c6b41e244b4a6091592c

• unscanned input data

– hash A binary hash to scan for, of length hash_size bytes.

– label length A 2-byte unsigned integer in native-Endian format indicating
the length, in bytes, of the binary label associated with the scan record.

– label A binary label associated with the scan record.

• scanned output data

– hash A binary hash that matched, of length hash_size in bytes.

– label length A 2-byte unsigned integer in native-Endian format indicating
the length, in bytes, of the binary label associated with the hash that matched.

– label A binary label associated with the scan record.

– JSON length A 4-byte unsigned integer in native-Endian format indicating
the length, in bytes, of the JSON text associated with the hash that matched.

– JSON The JSON text formatted based on the scan mode selected.

6.7 Scan List Input File

The scan_list command scans a list of hashes for matches. Valid lines of input may
be:

• Comment lines starting with #. Comment lines are forwarded to output.

• Hash lines to scan against, where each line consists of an offset followed by a tab
followed by the hash hexcode.

An example scan list input file is shown in Listing 9.

38

Listing 10: Example JSON output of database size values
{

"hash_data_store ":402221 ,
"hash_store ":401653 ,
"source_data_store ":101 ,
"source_id_store ":101 ,
"source_name_store ":101

}

Listing 11: Example JSON histogram format
{

"duplicates ":2,
"distinct_hashes ":3,
"total ":6

}

6.8 Size

The hashdb size command and size API interface returns size information about in-
ternal data structures in JSON format. The size of the source_id_store indicates the
number of sources. The size of the hash_store is greater than or equal to the number of
hashes stored, and is not exact because of how data is stored. Although for internal use,
these fields can give some sense of the size of a hashdb database. An example output is
shown in Listing 10.

6.9 Sources

The sources command prints JSON data as shown in Listing 3 and described in Table
14.

6.10 Histogram

The histogram command shows the density of hash duplicates across a hash database.
Fields are described in Table 17. An example histogram output line is shown in Listing
11.

Table 17: Fields used in JSON histogram output

Field Meaning
duplicates The total count of file offsets identified for each source

for the hash value
distinct_hashes The number of distinct hashes in the database with

this duplicates count
total The total number of hashes represented by this entry,

specifically, duplicates ∗ distinct_hashes

39

Listing 12: Example JSON timestamp format
{

"name ":" begin",
"delta ":"0.000396" ,
"total ":"0.000396"

}

6.11 Duplicates

The duplicates command prints JSON data associated with hashes with a specified
duplicates count as shown in Listing 5 and described in Table 16.

6.12 Hash Table

The hash_table command prints JSON data associated with a file hash as shown in
Listing 5 and described in Table 16.

6.13 Read Media

The read_media command prints raw binary bytes from a media image file. It is in-
tended that this output be consumed by other tools since raw binary data is typically
unreadable.

6.14 Timing

hashdb provides timing data in JSON format for use with timing analysis. Python
scripts may use this output to produce performance plots. An example timestamp entry
is shown in Listing 12. Fields are described in Table 18.

Table 18: Fields used in JSON timing data

Field Meaning
name The name of the timestamp
delta The delta time since the previous timestamp. In this

example, the delta is from the time the timestamping
started

total The total time since timestamping started

6.15 Database Changes

Statistics about hash database changes are reported on the console and to the log file
inside the hash database. These statistics show specific changes made to stores within
the hash database and also changes not made because conditions were not met. An
example change report is shown in Listing 13. Changes with a count of zero are not re-
ported. Changes tracked are summarized in Table 19 and discussed further in section 8.

40

Listing 13: Example report of a database change from an import operation
Processing 100000 of ?...
Processing 200000 of ?...
Processing 300000 of ?...
Processing 400000 of ?...
Processing 401686 of 401686 completed.
hashdb changes:
hash_data_source_inserted: 401713
hash_data_offset_inserted: 401732
hash_prefix_inserted: 401316
hash_suffix_inserted: 401598
hash_count_changed: 88
hash_not_changed: 46
source_data_inserted: 88
source_data_changed: 88
source_id_inserted: 88
source_id_already_present: 401820
source_name_inserted: 88

Table 19: Database changes resulting from commands that manipulate hash databases

Statistic Meaning
hash_data_source_inserted Number of hash data source entries inserted
hash_data_offset_inserted Number of file offset values actually recorded
hash_data_data_changed Number of hash data records that changed.
hash_data_duplicate_off-
set_detected

Number of file offset values already present, should
be zero

hash_data_mismatched_sub_
count_detected

Number of mismatched sub-count values in merge,
should be zero

hash_prefix_inserted Number of hash prefix keys inserted
hash_suffix_inserted Number of hash suffix values inserted
hash_count_changed Number of hash count changes were applied
hash_not_changed Number of hash and count values provided but same
source_data_inserted Number of source data records inserted
source_data_changed Number of source data records changed
source_data_same Number of source data records provided but same
source_id_inserted Number of source ID records inserted
source_id_already_present Number of source ID records provided but already

present
source_name_inserted Number of source names inserted
source_name_already_
present

Number of source names provided but already present

7 Using the hashdb Library APIs

hashdb provides C++ and Python interfaces for importing, scanning, and working with
block hashes:

• C++ Interfaces
To use C++ interfaces, include interface file hashdb.hpp and link hashdb library
libhashdb. hashdb interfaces use the hashdb namespace. Interfaces can assert on

41

unexpected error.

• Python Interfaces
To use the Python interfaces, load the hashdb module.

For information on installing the hashdb interfaces, please see Subsection 1.7. For
further details on syntax and usage, please see hashdb header file hashdb.hpp in Ap-
pendix C. Python users may also want to reference the Python interface test module
in the source code at hashdb/python_bindings/test_hashdb.py.

7.1 Data Types

C++ and Python use the following data type:

• The scan_mode_t enumerator defines JSON scan output modes: EXPANDED, EXPANDED_OPTIMIZED,
COUNT, and APPROXIMATE_COUNT.

Interfaces specific to C++ also use the following data types:

• The source_offset_t class holds offset information for a source, specifically,
file_hash, sub_count, and std::set<uint64_t> file_offsets.

• source_offsets_t: typedef set<source_offset_t> source_offsets_t

• source_name_t: typedef pair<repository_name, fillename> source_name_t

• source_names_t: typedef set<source_name_t> source_names_t

7.2 Settings

Holds hashdb settings.

• settings = settings_t()
Obtain default settings. The configurable setting parameters are: settings_version,
byte_alignment, block_size, max_count, max_sub_count, hash_prefix_bits,
hash_suffix_bytes.

• settings_string = settings.settings_string()
Return setting values in JSON format.

7.3 Support Functions

Support functions provide miscellaneous support and are not part of a class.

• version = version()
Return the hashdb version.

• version = hashdb_version()
Return the hashdb version, same as version.

• error_message = create_hashdb(hashdb_dir, settings, command_string)
Create a hash database given settings. Return "" else reason for failure.

• error_message = read_settings(hashdb_dir, &settings)
Query settings else false and reason for failure.

42

• binary_string = hex_to_bin(hex_string)

• hex_string = bin_to_hex(binary_string)

• error_message = ingest(hashdb_dir, ingest_path, step_size, repository_name,
whitelist_dir, disable_recursive_processing, disable_calculate_entropy,
disable_calculate_labels, command_string)
Calculate and import hashes from path to hashdb. Can disable recursive process-
ing, calculating entropy, and calculating labels.

• error_message = scan_media(hashdb_dir, media_image_file, step_size,
disable_recursive_processing, scan_mode)
Scan the media image for matches, writing match data to stdout.

• error_message = read_media(media_image_file, offset, count, &bytes)
C++ syntax. Read bytes at a string offset from a media image file.

• error_message, bytes_media = read_media(media_image_file, offset, count)
Python syntax. Read bytes at a string offset from a media image file, for example
1000 or 1000-zip-0.

• error_message = read_media(media_image_file, offset, count, &bytes)
C++ syntax. Read bytes at a numeric offset from a media image file.

• error_message, bytes_read = read_media(media_image_file, offset, count)
Python syntax. Read bytes at a numeric offset from a media image file, for example
1000 or 1000-zip-0.

• error_message = read_media_size(media_image_file, &size)
C++ syntax. Read media image file size.

• error_message, size = read_media_size(media_image_file)
Python syntax. Read media image file size.

7.4 Import

To import hash and source data, open an import manager, for example
{manager = import_manager_t("hashdb.hdb", "create my DB"). Then use import
functions to add data. Information in the log file will be added when the import man-
ager closes. The contents of log files is described in subsection 2.11.

• import_manager = import_manager_t(hashdb_dir, command_string)
Open the import manager. command_string will be written to the log file.

• import_manager.insert_source_name(file_hash, repository_name, filename)
Register the repository name, filename pair to the file hash.

• import_manager.insert_source_data(file_hash, filesize, file_type,
zero_count, nonprobative_count)
Set the source parameters for the file hash.

• import_manager.insert_hash(block_hash, k_entropy, block_label, file_hash,
sub_count, file_offsets)
Set hash parameters and add source count information for a new hash.

43

• import_manager.merge_hash(block_hash, k_entropy, block_label, file_hash,
sub_count, file_offsets)
C++ only. Set hash parameters and add source count information for a complete
set of source information for a hash.

• error_message = import_manager.import_json(json_string)
Import hash or source, return error_message or "" for no error.

• has_source = import_manager.has_source(file_hash)
See if the source is already present.

• first_file_hash = import_manager.first_source()
Access sources that have already been imported.

• file_hash = import_manager.next_source(file_hash)
Access sources that have already been imported.

• data_sizes = import_manager.size()
Return JSON text indicating the number of entries in the LMDB databases.

• size_t import_manager.size_hashes()
Return number of hash data store records in the database, which will be more than
the number of different hash values actually imported if duplicate hash values are
imported from multiple sources.

• size_t import_manager.size_sources()
Return the number of sources in the database, which can include sources from
decompressed content.

7.5 Scan

To scan for hashes, open a scan manager, for example
manager = scan_manager_t("hashdb.hdb"). Then use functions to find hash and
source information. Functions that return less information run faster than functions
that return more. Scan functions provide read-only access to hash and data stores.

• scan_manager = scan_manager_t(hashdb_dir)
Open the scan manager.

• bool scan_manager.find_hash(block_hash, &k_entropy, &block_label, &count,
source_offsets)
C++ only. Find hash, obtain fields related to hash on match.

• json_text = scan_manager.export_hash_json(block_hash)
Export hash information for the given binary hash else "" if not there.

• json_text = scan_manager.export_source_json(file_hash)
Export source information for the given source else "" if not there.

• count = scan_manager.find_hash_count(block_hash)
Return the total count of offsets associated with the hash.

• approximate_count = scan_manager.find_approximate_hash_count(block_hash)
This is the fastest scan function. It returns an approximate total count of offsets
associated with the hash, and can be wrong.

44

• has_source_data = scan_manager.find_source_data(file_hash,
filesize, file_type, zero_count, nonprobative_count)
C++ interface. Return information about the source.

• has_source_data, filesize, file_type, zero_count, nonprobative_count
= scan_manager.find_source_data(file_hash, filesize, file_type, zero_count,
nonprobative_count)
Python interface. Return information about the source.

• has_source_names = scan_manager.find_source_names(file_hash,
&source_names_t)
C++ only. Retrieve the source names for this source or "" on no match.

• json_text = scan_manager.find_hash_json(scan_mode, block_hash)
Find and return JSON text about the match or "" on no match. Text returned
depends on the scan mode.

• first_block_hash = scan_manager.first_hash()
Access hashes that have already been imported.

• next_block_hash = scan_manager.next_hash(block_hash)
Access hashes that have already been imported.

• first_file_hash = scan_manager.first_source()
Access sources that have already been imported.

• file_hash = scan_manager.next_source(file_hash)
Access sources that have already been imported.

• db_sizes = scan_manager.size()
Return sizes of internal data stores in JSON format.

• size_hashes = scan_manager.size_hashes()
Return the number of hash data store records in the database, which will be more
than the number of different hash values actually imported if duplicate hash values
are imported from multiple sources.

• size_sources = scan_manager.size_sources()
Return the number of sources in the database, which can include sources from
decompressed content.

7.6 Scan Stream

The scan stream interface is provided to allow rapid multi-threaded scans of lists of
hashes. The interface accepts long binary strings of unscanned data and returns long
binary strings of scanned data. The user must encode and decode this packed data. The
user may wish to embed this stream inside a custom socket layer.

• scan_stream = scan_stream_t(scan_manager, hash_size, scan_mode)
Open a scan stream interface.

• scan_stream.put(unscanned_data)
Submit unscanned data for scanning.

45

• scanned_data = scan_stream.get()
Retrieve scanned data else "" if data is currently not available.

• is_empty = scan_stream.empty()
Return true if there is no scanned data available to retrieve, no unscanned data
scheduled for scanning, and the scanner threads are not busy.

7.7 Timestamp

Provide timestamp support.

• timestamp = timestamp_t()
Create a timestamp object.

• timestamp_string = stamp(text)
Create a named timestamp and provide time and delta from the last stamp time
in JSON format.

8 LMDB Data Stores

This section provides details of how LMDB data stores are managed within a hashdb
database. This technical information is provided to give context behind the optimization
settings and options provided by hashdb and to explain the meaning of changes reported
in the change log.

8.1 LMDB Hash Store

The LMDB Hash Store is a highly compressed optimized store of all the block hashes
in the database. When scanning for a hash, if it is not in this store, then it is not in
the database. Because of the degree of optimization, there can be false positives. To
compensate, when a hash is found in the LMDB Hash Store, hashdb reads the LMDB
Hash Data Store to be sure the hash actually exists.

The LMDB Hash Store is a hybrid B-Tree and List store:

• The key portion consists of the first few bits of the hash, with enough bits so that
the value portion is not too large.

• The value portion consists of a list of the last few bytes of the hash, with enough
bytes so that the bits of the hash in the key and the bytes of the hash in the value
collectively identify the hash as present with a sufficiently low false positive rate.

The LMDB Hash Store uses two tuning parameters, hash prefix bits and hash suffix
bytes, to minimize data store size and maximize lookup speed. These parameters are
described in Subsection 2.12.

8.2 LMDB Hash Data Store

The LMDB Hash Data Store is a store of all hashes and their associated data and source
information:

46

• The key portion consists of a block hash, in binary.

• The value portion contains information about the hash, sources, and offsets into
the sources where the blocks are identified. Although the total count and the
source sub-count of offsets is not bound, no more than 50 actual offsets can be
stored per source. There are three types of value records:

– Type 1 only one entry for this hash:
source_id, k_entropy, block_label, sub_count, 0+ file_offsets

– Type 2 first line of multi-entry hash:
NULL, k_entropy, block_label, count, count_stored

– Type 3 remaining lines of multi-entry hash:
source_id, sub_count, 0+ file_offsets

Fields in the value portion are:

– source_id A source ID integer that maps to a source file hash. Any file
offsets in this record relate to this source.

– k_entropy The calculated entropy for the block, scaled up by 1, 000.
– block_label A label identifying information about the block. Users may

wish to examine k_entropy and block_label together to estimate that a
block might be nonprobative.

– sub_count The number of times this block has been seen in this source. For
Type 1 records, the sub_count is also the count.

– count The total number of times this block has been seen in all the sources.
For Type 1 records, the sub_count is also the count.

– 0+ file_offsets Zero or more file offsets associated with this source. Offsets
actually stored depends on max_count, max_sub_count, and the hardcoded
limit of 50 offsets per source. When stored, file offset indexes are stored
rather than file offsets in order to save space. These indexes are calculated
by dividing file offsets by byte_alignment.

– NULL A NULL byte distinguishes Type 1 records from Type 2. Note that
Type 3 records are distinguished as following Type 1 going forward until the
key changes.

– count_stored This field is used internally for efficiently recognizing when
max_count has been reached.

The LMDB Hash Data Store uses three tuning parameters to minimize data store size:
max_count, max_sub_count, and block_size. These parameters are described in Sub-
section 2.12.

8.3 LMDB Source ID Store

The LMDB Source ID Store maps source file hash values to source IDs. Although
the user never sees source IDs, we use source IDs in the LMDB Source ID Store, LMDB
Source Data Store, and the LMDB Hash Data Store because they are significantly shorter
than source file hashes. We wouldn’t need source IDs if we didn’t make this optimization.

• The key is the file_hash.

• The value is the source_id.

47

8.4 LMDB Source Data Store

The LMDB Source Data Store holds all the metadata about sources:

• The key is the source_id.

• The value consists of these fields:

– file_hash The source file hash associated with this source ID, in binary.

– filesize The size of the source file, in bytes.

– file_type A label indicating the type of the file, user defined.

– zero_count The number of blocks in the source that have all bytes in the
block equal to zero.

– nonprobative_count The number of block hashes stored for this source which
are considered to be nonprobative. Users may wish to set the nonprobative_count
value based on the k_entropy and block_label values of each block in the
source.

8.5 LMDB Source Name Store

The LMDB Source Name Store multimap maps source IDs to source names. This store
allows us to not re-import hashes from the same source and also allows us to see the list
of source names that are of the same source.

• The key is the source_id.

• The value is a name pair of:

– repository_name A label indicating the source repository.

– filename The path to this source.

8.6 Data Store Changes

The following changes are logged when a hashdb operation modifies data stores within
a hash database:

• hash_data_source_inserted
Incremented once for each source added to a hash. Not incremented when a source
for a hash already exists.

• hash_data_offset_inserted
Incremented once for each file offset value actually recorded. Not incremented when
a file offset is not recorded because the count recorded for the hash has reached
max count or the sub-count for the hash has reached max sub-count. Note that
file offset count and sub-count values are tracked regardless of whether file offset
values are actually recorded.

• hash_data_data_changed
Incremented when the data fields for a hash change. This should never happen
unless a custom version of hashdb is built that calculates different data values,
specifically, different block labels or entropy algorithm, and is used with a database
containing values that were calculated differently.

48

• hash_data_duplicate_offset_detected
Incremented when an offset is recorded for a source for a hash more than once.
This should never happen. This can happen when API users incorrectly call import
manager insert_hash more than once for the same source file offset.

• hash_data_mismatched_sub_count_detected
Incremented when adding a source sub-count when a different source sub-count al-
ready exists. This should never happen. This can happen when an offset sub-count
for a source is wrong because its import operation did not complete. The incre-
ment value is equal to the difference in sub-count values between the disagreeing
data.

• hash_prefix_inserted
Incremented each time a new hash prefix is inserted. Not incremented if the hash
prefix already exists.

• hash_suffix_inserted
Incremented each time a new hash suffix is inserted. Not incremented if the hash
suffix already exists.

• hash_count_changed
Incremented each time an approximate hash count changes from one value to
another. The approximate hash count is encoded in one byte. This encoding
changes less frequently as the actual hash count value increases.

• hash_not_changed
Incremented each time an insert is attempted but there is no change because the
approximate hash count stays at the same value.

• source_data_inserted
Incremented each time a new source data record is created.

• source_data_changed
Incremented each time an existing source data record is changed.

• source_data_same
Incremented each time an existing source data is submitted to be inserted but
there is no change because the source data is already there and is the same.

• source_id_inserted
Incremented each time a new source ID record is created.

• source_id_already_present
Incremented each time a source ID record is submitted to be inserted but there is
no change because the record is already there.

• source_name_inserted
Incremented each time a new source filename, repository name pair is inserted.

• source_name_already_present Incremented each time a source filename, repos-
itory name pair is submitted but not stored because the name pair is already
present.

49

9 Alternate Configurations

By default, hashdb is compiled to calculate MD5 hashes. hashdb can be recompiled to
use other encryption algorithms or even other artifacts:
, please see source code file hashdb/src_libhashdb/hasher/hash_calculator.hpp.

• Alternate Hash Algorithm
hashdb calculates block hashes using OpenSSL. If OpenSSL supports your hash
algorithm, replace it with yours. For example if you want SHA1, replace EVP_md5()
with EVP_sha1() in source code file hashdb/src_libhashdb/hasher/hash_calculator.hpp
and recompile.

• Alternate Artifacts
hashdb can be refitted to manage artifacts other than hashes. For example hashdb
can be refitted to store and search for email addresses. Specifically, replace code
that iterates through buffers and calculates block hashes with code that iterates
through buffers and finds your artifact.

For optimal performance, we recommend that you do not store your artifact as-is.
Artifact key values should be relatively randomly distributed and not hundreds of
bytes long. To achieve this, we recommend hashing your artifact with something
like CRC64, and storing and scanning for the CRC hash value of the artifact.

References

[1] Garfinkel, S., and McCarrin, M. Hash-based Carving: Searching media for
complete files and file fragments with sector hashing and hashdb, DFRWS 2015 USA.
http://www.sciencedirect.com/science/article/pii/S1742287615000468

[2] Bradley, J., and Garfinkel, S. bulk_extractor users guide, September 2013.
http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf.

[3] Young, J., Foster, K., Garfinkel, S., and Fairbanks, K. Distinct sec-
tor hashes for target file detection. IEEE Computer (December 2012). http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6311397.

50

http://www.sciencedirect.com/science/article/pii/S1742287615000468
http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6311397
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6311397

Appendices

A hashdb Quick Reference

New Database
create [-b <block size>] [-a <byte alignment>] [-m <max

count:max sub-count>] [-t <hash prefix bits:hash
suffix bytes>] <hashdb.hdb>

Create a new hash database.

Import/Export
ingest [-r <repository name>] [-w <whitelist.hdb>]

[-s <step size>] [-x rel] <hashdb.hdb> <import
directory>

Import from path recursively into hash database, la-
beling hashes in the whitelist and hashes matching en-
tropy traits. Can disable recursion, entropy, labels

import_tab [-r <repository name>] [-w <whitelist.hdb>]
<hashdb.hdb> <tab.txt>

Import from tab file into hash database, labeling
hashes in the whitelist.

import <hashdb.hdb> <hashdb.json> Import JSON format data into hash database.
export [-p <begin:end>] <hashdb.hdb> <hashdb.json> Export all or part of hash database in JSON format.

Database Manipulation
add <A.hdb> <B.hdb> A→ B add A into B
add_multiple <A.hdb> <B.hdb> ... <C.hdb> A+B + . . .→ C add A, B, . . . into C.
add_repository <A.hdb> <B.hdb> <repository name> Ar → B add when repository name matches.
add_range<A.hdb> <B.hdb> <m:n> Am:n → B add hashes that have source counts within

range, inclusive.
intersect <A.hdb> <B.hdb> <C.hdb> A ∩B → C add when hash and source are common.
intersect_hash <A.hdb> <B.hdb> <C.hdb> A ∩B → C add when hashes are common.
subtract <A.hdb> <B.hdb> <C.hdb> A−B → C add when hash and source not common.
subtract_hash <A.hdb> <B.hdb> <C.hdb> A−B → C add when hashes are not common.
subtract_repository <A.hdb> <B.hdb> <repository name> Ar → B add unless repository name matches.

Scan
scan_list [-j e|o|c|a] <hashdb.hdb> <hashes file> Scan hashes file for hash match, return expanded, ex-

panded optimized, count only, or approximate count.
scan_hash [-j e|o|c|a] <hashdb.hdb> <hex block hash> Scan for hash match, return expanded, expanded

optimized, count only, or approximate count.
scan_media [-s <step size>] [-j e|o|c|a] [-x r]

<hashdb.hdb> <media image file>
Scan media image for hash match, return expanded,
expanded optimized, count only, or approximate
count. Can disable recursion.

Statistics
size <hashdb.hdb> Print size information for internal database tables.
sources <hashdb.hdb> Print source information.
histogram <hashdb.hdb> Print hash distribution.
duplicates [-j e|o|c|a] <hashdb.hdb> <number> Print hashes sourced the given number of times.
hash_table [-j e|o|c|a] <hashdb.hdb> <hex file hash> Print hashes associated with the source file hash.
read_media <media image file> <offset> <count> Print raw bytes from the media image file.
read_media_size <media image file> Print the size of the media image file.

Performance Analysis
add_random <hashdb.hdb> <count> Add random hashes, log to timestamp.json.
scan_random [-j e|o|c|a] <hashdb.hdb> <count> Scan random hashes, log to timestamp.json.
add_same <hashdb.hdb> <count> Add same hashes, log to timestamp.json.
scan_same [-j e|o|c|a] <hashdb.hdb> <count> Scan same hashes, log to timestamp.json.

bulk_extractor Scanner
bulk_extractor -E hashdb -S hashdb_mode=import -o outdir1 -R my_import_dir Import directory.
bulk_extractor -E hashdb -S hashdb_mode=import -o outdir1 my_media_image Import media image.
bulk_extractor -E hashdb -S hashdb_mode=scan -S hashdb_scan_path= outdir1/hashdb.hdb

-o outdir2 my_media_image2
Scan media image.

51

B Output of the hashdb Help Command
hashdb Version 3.0.0-alpha-9
Usage: hashdb [-h|--help|-h all] [-v|-V|--version]

hashdb [-h <command>]
hashdb [options] <command> [<args>]

New Database:
create [-b <block size>] [-a <byte alignment>]

[-m <max count:max sub-count>]
[-t <hash prefix bits:hash suffix bytes>] <hashdb>

Import/Export:
ingest [-r <repository name>] [-w <whitelist.hdb>] [-s <step size>]

[-x <rel>] <hashdb.hdb> <import directory>
import_tab [-r <repository name>] [-w <whitelist.hdb>] <hashdb> <tab file>
import <hashdb> <json file>
export [-p <begin:end>] <hashdb> <json file>

Database Manipulation:
add <source hashdb> <destination hashdb>
add_multiple <source hashdb 1> <source hashdb 2> <destination hashdb>
add_repository <source hashdb> <destination hashdb> <repository name>
add_range <source hashdb> <destination hashdb> <m:n>
intersect <source hashdb 1> <source hashdb 2> <destination hashdb>
intersect_hash <source hashdb 1> <source hashdb 2> <destination hashdb>
subtract <source hashdb 1> <source hashdb 2> <destination hashdb>
subtract_hash <source hashdb 1> <source hashdb 2> <destination hashdb>
subtract_repository <source hashdb> <destination hashdb> <repository name>

Scan:
scan_list [-j e|o|c|a] <hashdb> <hash list file>
scan_hash [-j e|o|c|a] <hashdb> <hex block hash>
scan_media [-s <step size>] [-j e|o|c|a] [-x <r>] <hashdb> <media image>

Statistics:
size <hashdb>
histogram <hashdb>
duplicates [-j e|o|c|a] <hashdb> <number>
hash_table [-j e|o|c|a] <hashdb> <hex file hash>
read_media <media image> <offset> <count>
read_media_size <media image>

Performance Analysis:
add_random <hashdb> <hex file hash> <count>
scan_random <hashdb> <count>
add_same <hashdb> <hex file hash> <count>
scan_same <hashdb> <count>
test_scan_stream <hashdb> <count>

New Database:
create [-b <block size>] [-a <byte alignment>]

[-m <max count:max sub-count>]
[-t <hash prefix bits:hash suffix bytes>] <hashdb>

Create a new <hashdb> hash database.

Options:
-b, --block_size=<block size>

<block size>, in bytes, or use 0 for no restriction
(default 512)

-a, --byte_alignment=<n>

52

<byte_alignment>, in bytes, or 1 for any alignment (default 512)
-m, --max_counts=<max count:max sub-count>

The maximum number of source file offset references to store for a
hash and the maximum number of source file offset references associated
with a source to store for a hash (default 100000:50)

-t, --tuning=<hash prefix bits:hash suffix bytes>
The number of hash prefix bits and suffix bytes to use for
optimizing hash storage (default 28:3)

Parameters:
<hashdb> the file path to the new hash database to create

Import/Export:
ingest [-r <repository name>] [-w <whitelist.hdb>] [-s <step size>]

[-x <rel>] <hashdb.hdb> <import directory>
Import hashes recursively from <import directory> into hash database

<hashdb>.

Options:
-r, --repository_name=<repository name>

The repository name to use for the set of hashes being imported.
(default is "repository_" followed by the <import directory> path).

-w, --whitelist_dir
The path to a whitelist hash database. Hashes matching this database
will be marked with a whitelist entropy flag.

-s, --step_size
The step size to move along while calculating hashes. Step size must
be divisible by the byte alignment defined in the database.

-x, --disable_processing
Disable further processing:

r disables recursively processing embedded data.
e disables calculating entropy.
l disables calculating block labels.

Parameters:
<import dir> the directory to recursively import from
<hashdb> the hash database to insert the imported hashes into

import_tab [-r <repository name>] [-w <whitelist.hdb>] <hashdb> <tab file>
Import hashes from file <tab file> into hash database <hashdb>.

Options:
-r, --repository_name=<repository name>

The repository name to use for the set of hashes being imported.
(default is "repository_" followed by the <import directory> path).

-w, --whitelist_dir
The path to a whitelist hash database. Hashes matching this database
will be marked with a whitelist entropy flag.

Parameters:
<hashdb> the hash database to insert the imported hashes into
<NIST file> the NIST file to import hashes from

import <hashdb> <json file>
Import hashes from file <json file> into hash database <hashdb>.

Parameters:
<hashdb> the hash database to insert the imported hashes into
<json file> the JSON file to import hashes from

export [-p <begin:end>] <hashdb> <json file>
Export hashes from hash database <hashdb> into file <json file>.

Options:

53

-p, --part_range=<begin:end>
The part of the hash database to export, from begin hex block hash to
end hex block hash. The entire hash database is exported by default.

Parameters:
<hashdb> the hash database to export
<json file> the JSON file to export the hash database into

Database Manipulation:
add <source hashdb> <destination hashdb>

Copy hashes from the <source hashdb> to the <destination hashdb>.

Parameters:
<source hashdb> the source hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into

add_multiple <source hashdb 1> <source hashdb 2> <destination hashdb>
Perform a union add of <source hashdb 1> and <source hashdb 2>
into the <destination hashdb>.

Parameters:
<source hashdb 1> a hash database to copy hashes from
<source hashdb 2> a second hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into

add_repository <source hashdb> <destination hashdb> <repository name>
Copy hashes from the <source hashdb> to the <destination hashdb>
when the <repository name> matches.

Parameters:
<source hashdb> the source hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into
<repository name> the repository name to match when adding hashes

add_range <source hashdb> <destination hashdb> <m:n>
Copy the hashes from the <source hashdb> to the <destination hashdb>
that have source reference count values between m and n.

Parameters:
<source hashdb> the hash database to copy hashes from that have a

source count within range m and n
<destination hashdb> the hash database to copy hashes to when the

source count is within range m and n
<m:n> the minimum and maximum count value range in which

hashes will be copied
intersect <source hashdb 1> <source hashdb 2> <destination hashdb>

Copy hashes that are common to both <source hashdb 1> and
<source hashdb 2> into <destination hashdb>. Hashes and their sources
must match.

Parameters:
<source hashdb 1> a hash databases to copy the intersection of
<source hashdb 2> a second hash databases to copy the intersection of
<destination hashdb> the destination hash database to copy the

intersection of exact matches into
intersect_hash <source hashdb 1> <source hashdb 2> <destination hashdb>

Copy hashes that are common to both <source hashdb 1> and
<source hashdb 2> into <destination hashdb>. Hashes match when hash
values match, even if their associated source repository name and
filename do not match.

Parameters:
<source hashdb 1> a hash databases to copy the intersection of
<source hashdb 2> a second hash databases to copy the intersection of

54

<destination hashdb> the destination hash database to copy the
intersection of hashes into

subtract <source hashdb 1> <source hashdb 2> <destination hashdb>
Copy hashes that are in <souce hashdb 1> and not in <source hashdb 2>
into <destination hashdb>. Hashes and their sources must match.

Parameters:
<source hashdb 1> the hash database containing hash values to be

added if they are not also in the other database
<source hashdb 2> the hash database containing the hash values that

will not be added
<destination hashdb> the hash database to add the difference of the

exact matches into
subtract_hash <source hashdb 1> <source hashdb 2> <destination hashdb>

Copy hashes that are in <souce hashdb 1> and not in <source hashdb 2>
into <destination hashdb>. Hashes match when hash values match, even if
their associated source repository name and filename do not match.

Parameters:
<source hashdb 1> the hash database containing hash values to be

added if they are not also in the other database
<source hashdb 2> the hash database containing the hash values that

will not be added
<destination hashdb> the hash database to add the difference of the

hashes into
subtract_repository <source hashdb> <destination hashdb> <repository name>

Copy hashes from the <source hashdb> to the <destination hashdb>
when the <repository name> does not match.

Parameters:
<source hashdb> the source hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into
<repository name> the repository name to exclude when adding hashes

Scan:
scan_list [-j e|o|c|a] <hashdb> <hash list file>

Scan hash database <hashdb> for hashes in <hash list file> and print out
matches.

Options:
-j, --json_scan_mode

The JSON scan mode selects optimization and output (default is o):
e return expanded output.
o return expanded output optimized to not repeat hash and source

information.
c return hash duplicates count
a return approximate hash duplicates count

-x, --disable_processing
Disable further processing:

r disables recursively processing embedded data.

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<hashes file> the file containing hash values to scan for

scan_hash [-j e|o|c|a] <hashdb> <hex block hash>
Scan hash database <hashdb> for the specified <hash value> and print
out matches.

Options:
-j, --json_scan_mode

55

The JSON scan mode selects optimization and output (default is o):
e return expanded output.
o return expanded output optimized to not repeat hash and source

information.
c return hash duplicates count
a return approximate hash duplicates count

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<hex block hash> the hash value to scan for

scan_media [-s <step size>] [-j e|o|c|a] [-x <r>] <hashdb> <media image>
Scan hash database <hashdb> for hashes in <media image> and print out
matches.

Options:
-s, --step_size

The step size to move along while calculating hashes. Step size must
be divisible by the byte alignment defined in the database.

-j, --json_scan_mode
The JSON scan mode selects optimization and output (default is o):

e return expanded output.
o return expanded output optimized to not repeat hash and source

information.
c return hash duplicates count
a return approximate hash duplicates count

-x, --disable_processing
Disable further processing:

r disables recursively processing embedded data.

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<media image> the media image file to scan for matching block hashes

Statistics:
size <hashdb>

Print the sizes of the database tables inside the given <hashdb> database.

Parameters:
<hashdb> the hash database to print size information for

sources <hashdb>
Print source information indicating where the hashes in the <hashdb>
came from.

Parameters:
<hashdb> the hash database to print all the repository name,

filename source information for
histogram <hashdb>

Print the histogram of hashes for the given <hashdb> database.

Parameters:
<hashdb> the hash database to print the histogram of hashes for

duplicates [-j e|o|c|a] <hashdb> <number>
Print the hashes in the given <hashdb> database that are sourced the
given <number> of times.

Options:
-j, --json_scan_mode

The JSON scan mode selects optimization and output (default is o):
e return expanded output.

56

o return expanded output optimized to not repeat hash and source
information.

c return hash duplicates count
a return approximate hash duplicates count

Parameters:
<hashdb> the hash database to print duplicate hashes about
<number> the requested number of duplicate hashes

hash_table [-j e|o|c|a] <hashdb> <hex file hash>
Print hashes from the given <hashdb> database that are associated with
the <source_id> source index.

Options:
-j, --json_scan_mode

The JSON scan mode selects optimization and output (default is o):
e return expanded output.
o return expanded output optimized to not repeat hash and source

information.
c return hash duplicates count
a return approximate hash duplicates count

Parameters:
<hashdb> the hash database to print hashes from
<hex file hash> the file hash of the source to print hashes for

read_media <media image> <offset> <count>
Print <count> number of raw bytes starting at the specified <offset> in
the <media image> file.

Parameters:
<media image> the media image file to print raw bytes from
<offset> the offset in the media image file to read from
<count> the number of raw bytes to read

read_media_size <media image>
Print the size, in bytes, of the media image file.

Parameters:
<media image> the media image file to print the size of

Performance Analysis:
add_random <hashdb> <hex file hash> <count>

Add <count> randomly generated hashes into hash database <hashdb>.
Write performance data in the database’s log.txt file.

Options:
-r, --repository=<repository name>

The repository name to use for the set of hashes being added.
(default is "repository_add_random").

Parameters:
<hashdb> the hash database to add randomly generated hashes into
<hex file hash>the file hash of the source to print hashes for
<count> the number of randomly generated hashes to add

scan_random <hashdb> <count>
Scan for random hashes in the <hashdb> database. Write performance
data in the database’s log.txt file.

Options:
-j, --json_scan_mode

The JSON scan mode selects optimization and output (default is o):
e return expanded output.
o return expanded output optimized to not repeat hash and source

57

information.
c return hash duplicates count
a return approximate hash duplicates count

Parameters:
<hashdb> the hash database to scan
<count> the number of randomly generated hashes to scan for

add_same <hashdb> <hex file hash> <count>
Add <count> block hashes of value 0x800000... into hash database <hashdb>.
Write performance data in the database’s log.txt file.

Options:
-r, --repository=<repository name>

The repository name to use for the set of hashes being added.
(default is "repository_add_same").

Parameters:
<hashdb> the hash database to add hashes of the same value into
<hex file hash>the file hash of the source to print hashes for
<count> the number of hashes of the same value to add

scan_same <hashdb> <count>
Scan for the same hash value in the <hashdb> database. Write
performance data in the database’s log.txt file.

Options:
-j, --json_scan_mode

The JSON scan mode selects optimization and output (default is o):
e return expanded output.
o return expanded output optimized to not repeat hash and source

information.
c return hash duplicates count
a return approximate hash duplicates count

Parameters:
<hashdb> the hash database to scan
<count> the number of randomly generated hashes to scan for

test_scan_stream <hashdb> <count>
Run <count> scan_stream requests, where each request contains 10K block
hashes of value 0x800000.... Write performance data in the database’s
log.txt file.

Options:
-j, --json_scan_mode

The JSON scan mode selects optimization and output (default is o):
e return expanded output.
o return expanded output optimized to not repeat hash and source

information.
c return hash duplicates count
a return approximate hash duplicates count

Parameters:
<hashdb> the hash database to scan
<count> the number of scan requests to issue

C hashdb C++ API: hashdb.hpp

// Author : Bruce Al l en
// Created : 2/25/2013
//

58

// The so f tware prov ided here i s r e l e a s e d by the Naval Postgraduate
// School , an agency o f the U. S . Department o f Navy . The so f tware
// bears no warranty , e i t h e r expres sed or imp l i ed . NPS does not assume
// l e g a l l i a b i l i t y nor r e s p o n s i b i l i t y f o r a User ’ s use o f the so f tware
// or the r e s u l t s o f such use .
//
// Please note t ha t w i th in the United Sta tes , c opy r i g h t p ro t ec t i on ,
// under Sec t ion 105 o f the United S t a t e s Code , T i t l e 17 , i s not
// a v a i l a b l e f o r any work o f the United S t a t e s Government and/or f o r
// any works crea t ed by United S t a t e s Government employees . User
// acknowledges t ha t t h i s so f tware conta ins work which was crea t ed by
// NPS government employees and i s t h e r e f o r e in the p u b l i c domain and
// not s u b j e c t to copy r i g h t .
//
// Released in t o the pu b l i c domain on February 25 , 2013 by Bruce Al l en .

/∗∗
∗ \ f i l e
∗ Header f i l e f o r the hashdb l i b r a r y .
∗
∗ NOTE: This f i l e i n c l u d e s SWIG preproces sor d i r e c t i v e s used f o r
∗ b u i l d i n g Python b ind ing s . S p e c i f i c a l l y :
∗ SWIG i s not de f ined when b u i l d i n g C++.
∗ SWIG i s de f ined when b u i l d i n g Python b ind ing s .
∗/

#ifndef HASHDB_HPP
#define HASHDB_HPP

#include <st r i ng>
#include <set>
#include <s td i n t . h>
#include <sys / time . h> // t imeva l ∗ f o r timestamp_t
#include <pthread . h> // pthread_t ∗ f o r scan_stream_t

// ∗∗
// ve r s i on o f the hashdb l i b r a r y
// ∗∗
/∗∗
∗ Version o f the hashdb l i b r a r y , ou t s i d e hashdb namespace .
∗/

extern "C"
const char∗ hashdb_version () ;

namespace scan_stream {
class scan_thread_data_t ;

}
namespace hashdb {

class lmdb_hash_data_manager_t ;
class lmdb_hash_manager_t ;
class lmdb_source_data_manager_t ;
class lmdb_source_id_manager_t ;
class lmdb_source_name_manager_t ;
class lmdb_changes_t ;
class logger_t ;
class locked_member_t ;

// ∗∗
// ve r s i on o f the hashdb l i b r a r y
// ∗∗
/∗∗

59

∗ Version o f the hashdb l i b r a r y , i n s i d e hashdb namespace .
∗/

extern "C"
const char∗ ve r s i on () ;

// ∗∗
// source o f f s e t s
// ∗∗

#ifndef SWIG
// source_o f f s e t in format ion
struct source_of f s e t_t {

const std : : s t r i n g f i l e_hash ;
const uint64_t sub_count ;
const std : : set<uint64_t> f i l e _ o f f s e t s ;
source_of f s e t_t (const std : : s t r i n g& p_file_hash ,

const uint64_t p_sub_count ,
const std : : set<uint64_t> p_ f i l e_o f f s e t s) ;

/∗∗
∗ Only the f i l e hash i s compared . I f they are the same , the

sub_count
∗ shou ld match . Because f i l e _ o f f s e t s are truncated , the s e t o f

o f f s e t s
∗ i s expec ted to not a lways match .
∗/

bool operator<(const source_of f s e t_t& that) const ;
} ;
typedef std : : set<source_of f set_t> source_o f f s e t s_t ;

// pa i r (repository_name , f i l ename)
typedef std : : pa ir<std : : s t r i ng , std : : s t r i ng> source_name_t ;
typedef std : : set<source_name_t> source_names_t ;

#endif

// ∗∗
// s e t t i n g s
// ∗∗
/∗∗
∗ Provides hashdb s e t t i n g s .
∗
∗ At t r i b u t e s :
∗ s e t t i n g s_ve r s i on − The ver s i on o f the s e t t i n g s record
∗ byte_al ignment − Minimal s t ep s i z e o f data , in b y t e s . Blocks must
∗ a l i g n to t h i s .
∗ b l o c k_s i z e − Size , in by tes , o f data b l o c k s .
∗ max_count − The maximum number o f source o f f s e t s to s t o r e f o r a
∗ s i n g l e hash va lue .
∗ max_sub_count − The maximum number o f source o f f s e t s to s t o r e
∗ s i n g l e source a s s o c i a t e d wi th a hash va lue .
∗ hash_pre f i x_b i t s − The number o f hash p r e f i x b i t s to use as the
∗ key in the opt imized hash s t o rage .
∗ hash_su f f i x_by tes − The number o f hash s u f f i x b y t e s to use as the
∗ va lue in the opt imized hash s t o rage .
∗/

struct s e t t i ng s_t {
#ifndef SWIG

stat ic const uint32_t CURRENT_SETTINGS_VERSION = 3 ;
#endif

uint32_t s e t t i ng s_ve r s i on ;
uint32_t byte_alignment ;
uint32_t b lock_s ize ;
uint32_t max_count ;

60

uint32_t max_sub_count ;
uint32_t hash_pref ix_bits ;
uint32_t hash_suff ix_bytes ;
s e t t i ng s_t () ;
s td : : s t r i n g s e t t i n g s_s t r i n g () const ;

} ;

// ∗∗
// scan modes
// ∗∗
/∗∗
∗ The scan mode con t r o l s scan op t im i za t i on and re turned JSON content .
∗/

enum scan_mode_t {EXPANDED,
EXPANDED_OPTIMIZED,
COUNT,
APPROXIMATE_COUNT} ;

// ∗∗
// misc suppor t i n t e r f a c e s
// ∗∗
/∗∗
∗ Create a new hashdb .
∗ Return t rue and "" i f hashdb i s created , f a l s e and reason i f not .
∗ The curren t implementat ion may abor t i f something worse than a s imple
∗ path problem happens .
∗
∗ Parameters :
∗ hashdb_dir − Path to the database to c r ea t e . The path must not
∗ e x i s t ye t .
∗ s e t t i n g s − The hashdb s e t t i n g s .
∗ command_string − S t r ing to put in t o the new hashdb l o g .
∗
∗ Returns :
∗ "" i f s u c c e s s f u l e l s e reason i f not .
∗/

std : : s t r i n g create_hashdb (const std : : s t r i n g& hashdb_dir ,
const hashdb : : s e t t i ng s_t& s e t t i n g s ,
const std : : s t r i n g& command_string) ;

/∗∗
∗ Return hashdb s e t t i n g s e l s e reason f o r f a i l u r e .
∗ The curren t implementat ion may abor t i f something worse than a s imple
∗ path problem happens .
∗
∗ Parameters :
∗ hashdb_dir − Path to the database to ob ta in the s e t t i n g s o f .
∗ s e t t i n g s − The hashdb s e t t i n g s .
∗
∗ Returns :
∗ True and "" i f s e t t i n g s were r e t r i e v ed , f a l s e and reason i f not .
∗/

std : : s t r i n g read_set t ings (const std : : s t r i n g& hashdb_dir ,
#ifde f SWIG

hashdb : : s e t t i ng s_t& OUTPUT
#else

hashdb : : s e t t i ng s_t& s e t t i n g s
#endif

) ;

/∗∗

61

∗ Return b inary s t r i n g or empty i f h e x d i g e s t l e n g t h i s not even
∗ or has any i n v a l i d d i g i t s .
∗/

std : : s t r i n g hex_to_bin (const std : : s t r i n g& hex_str ing) ;

/∗∗
∗ Return hexadecimal r e p r e s en t a t i on o f the b inary s t r i n g .
∗/

std : : s t r i n g bin_to_hex (const std : : s t r i n g& binary_str ing) ;

/∗∗
∗ Ca l cu l a t e and i n g e s t hashes from f i l e s r e c u r s i v e l y from a source
∗ path . F i l e s wi th EWF ex t en s i on s (. E01 f i l e s) w i l l be i n g e s t e d as
∗ media images .
∗
∗ Parameters :
∗ hashdb_dir − Path to the hashdb data s t o r e to import i n t o .
∗ inges t_path − Path to a source f i l e or d i r e c t o r y to r e c u r s i v e l y
∗ i n g e s t b l o c k hashes from . May inc l ude E01 f i l e s .
∗ s t ep_s i z e − The s t ep s i z e to move a long wh i l e c a l c u l a t i n g hashes .
∗ The s t ep s i z e must be d i v i s i b l e by the by t e a l ignment de f ined in
∗ the database .
∗ repository_name − A repo s i t o r y name to a t t r i b u t e the sources to .
∗ wh i t e l i s t_d i r − Path to a w h i t e l i s t hashdb data s t o r e . Hashes
∗ matching t h e s e w i l l not be i n g e s t e d .
∗ d i sab l e_recur s i v e_proce s s ing − Disab l e p roce s s ing embedded data .
∗ d i sab l e_ca l cu l a t e_en t ropy − Disab l e c a l c u l a t i n g b l o c k entropy

va l u e s .
∗ d i s a b l e_ca l c u l a t e_ l a b e l s − Disab l e c a l c u l a t i n g b l o c k entropy

l a b e l s .
∗ command_string − S t r ing to put in t o the new hashdb l o g .
∗
∗ Returns :
∗ "" i f s u c c e s s f u l e l s e reason i f not .
∗/

std : : s t r i n g i n g e s t (const std : : s t r i n g& hashdb_dir ,
const std : : s t r i n g& ingest_path ,
const s i ze_t step_size ,
const std : : s t r i n g& repository_name ,
const std : : s t r i n g& wh i t e l i s t_d i r ,
const bool d i sab l e_recur s ive_proce s s ing ,
const bool disab le_ca lcu late_entropy ,
const bool d i s ab l e_ca l cu l a t e_ labe l s ,
const std : : s t r i n g& command_string) ;

/∗∗
∗ Ca l cu l a t e and scan f o r hashes from the media image f i l e . F i l e s wi th
∗ EWF ex t en s i on s (. E01 f i l e s) are recogn i z ed as media images .
∗
∗ Parameters :
∗ hashdb_dir − Path to the hashdb data s t o r e to scan aga in s t .
∗ media_image_file − Path to a media image f i l e , which can be a
∗ raw f i l e or an E01 f i l e .
∗ s t ep_s i z e − The s t ep s i z e to move a long wh i l e c a l c u l a t i n g hashes .
∗ The s t ep s i z e must be d i v i s i b l e by the by t e a l ignment de f ined in
∗ the database .
∗ d i sab l e_recur s i v e_proce s s ing − Disab l e p roce s s ing embedded data .
∗ scan_mode − The mode to use f o r performing the scan . Contro l s
∗ scan op t im i za t i on and re turned JSON content .
∗
∗ Returns :

62

∗ "" i f s u c c e s s f u l e l s e reason i f not .
∗/

std : : s t r i n g scan_media (const std : : s t r i n g& hashdb_dir ,
const std : : s t r i n g& media_image_file ,
const s i ze_t step_size ,
const bool d i sab l e_recur s ive_proce s s ing ,
const hashdb : : scan_mode_t scan_mode) ;

/∗∗
∗ Read raw by t e s at the media o f f s e t in the media image f i l e . F i l e s
∗ with EWF ex t en s i on s (. E01 f i l e s) are recogn i z ed as media images .
∗ Example media o f f s e t s are "1000" and "1000− z ip −0".
∗
∗ Parameters :
∗ media_image_file − Path to a media image f i l e , which can be a
∗ raw f i l e or an E01 f i l e .
∗ media_of fse t − The o f f s e t i n t o the media image f i l e .
∗ count − The number o f b y t e s to read .
∗ b y t e s − The raw by t e s read .
∗
∗ Returns :
∗ "" i f s u c c e s s f u l e l s e reason i f not .
∗/

std : : s t r i n g read_media (const std : : s t r i n g& media_image_file ,
const std : : s t r i n g& media_offset ,
const uint64_t count ,

#ifndef SWIG
std : : s t r i n g& bytes

#else
std : : s t r i n g& OUTPUT // by t e s

#endif
) ;

/∗∗
∗ Read raw by t e s at the g iven o f f s e t in the media image f i l e . F i l e s
∗ with EWF ex t en s i on s (. E01 f i l e s) are recogn i z ed as media images .
∗ Example media o f f s e t s are "1000" and "1000− z ip −0".
∗
∗ Parameters :
∗ media_image_file − Path to a media image f i l e , which can be a
∗ raw f i l e or an E01 f i l e .
∗ o f f s e t − The o f f s e t i n t o the media image f i l e .
∗ media_of fse t − The o f f s e t i n t o the media image f i l e .
∗ count − The number o f b y t e s to read .
∗ b y t e s − The raw by t e s read .
∗
∗ Returns :
∗ "" i f s u c c e s s f u l e l s e reason i f not .
∗/

std : : s t r i n g read_media (const std : : s t r i n g& media_image_file ,
const uint64_t o f f s e t ,
const uint64_t count ,

#ifndef SWIG
std : : s t r i n g& bytes

#else
std : : s t r i n g& OUTPUT // by t e s

#endif
) ;

/∗∗

63

∗ Read the s i z e o f the media image f i l e . F i l e s wi th EWF ex t en s i on s
∗ (. E01 f i l e s) are recogn i z ed as media images .
∗
∗ Parameters :
∗ media_image_file − Path to a media image f i l e , which can be a
∗ raw f i l e or an E01 f i l e .
∗ s i z e − The s i z e , in by tes , o f the media image .
∗
∗ Returns :
∗ "" i f s u c c e s s f u l e l s e reason i f not .
∗/

std : : s t r i n g read_media_size (const std : : s t r i n g& media_image_file ,
#ifndef SWIG

uint64_t& s i z e
#else

uint64_t& OUTPUT // by t e s
#endif

) ;

// ∗∗
// import
// ∗∗
/∗∗
∗ Manage a l l LMDB updates . A l l i n t e r f a c e s are l o cked and t h r ead sa f e .
∗ A lo g g e r i s opened f o r l o g g i n g the command and f o r l o g g i n g
∗ t imestamps and changes app l i e d during the s e s s i on . Upon c lo sure ,
∗ changes are wr i t t en to the l o g g e r and the l o g g e r i s c l o s ed .
∗/

class import_manager_t {

private :
lmdb_hash_data_manager_t∗ lmdb_hash_data_manager ;
lmdb_hash_manager_t∗ lmdb_hash_manager ;
lmdb_source_data_manager_t∗ lmdb_source_data_manager ;
lmdb_source_id_manager_t∗ lmdb_source_id_manager ;
lmdb_source_name_manager_t∗ lmdb_source_name_manager ;

logger_t ∗ l o gg e r ;
hashdb : : lmdb_changes_t∗ changes ;

public :
#ifndef SWIG

// do not a l l ow copy or assignment
import_manager_t (const import_manager_t&) = delete ;
import_manager_t& operator=(const import_manager_t&) = delete ;

#endif

/∗∗
∗ Open hashdb f o r import ing .
∗
∗ Parameters :
∗ hashdb_dir − Path to the hashdb data s t o r e to import i n t o .
∗ command_string − S t r ing to put in t o the new hashdb l o g .
∗/

import_manager_t (const std : : s t r i n g& hashdb_dir ,
const std : : s t r i n g& command_string) ;

/∗∗
∗ The de s t r u c t o r c l o s e s the l o g f i l e and data s t o r e re source s .
∗/

~import_manager_t () ;

64

/∗∗
∗ I n s e r t the repository_name , f i l ename pa i r a s s o c i a t e d wi th the
∗ source .
∗
∗ Parameters :
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗ repository_name − A repo s i t o r y name to a t t r i b u t e the sources to .
∗ f i l ename − The name o f the source f i l e .
∗/

void insert_source_name (const std : : s t r i n g& f i l e_hash ,
const std : : s t r i n g& repository_name ,
const std : : s t r i n g& f i l ename) ;

/∗∗
∗ I n s e r t or change source data .
∗
∗ Parameters :
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗ f i l e s i z e − The s i z e o f the source , in b y t e s .
∗ f i l e_ t y p e − A s t r i n g r ep r e s en t i n g the type o f the f i l e .
∗ zero_count − The count o f b l o c k s sk ipped because they on ly
∗ conta in the zero by t e .
∗ nonprobative_count − The count o f non−p ro ba t i v e hashes
∗ i d e n t i f i e d f o r t h i s source .
∗/

void insert_source_data (const std : : s t r i n g& f i l e_hash ,
const uint64_t f i l e s i z e ,
const std : : s t r i n g& f i l e_type ,
const uint64_t zero_count ,
const uint64_t nonprobative_count) ;

/∗∗
∗ I n s e r t or change the hash data a s s o c i a t e d wi th the block_hash .
∗ Use t h i s dur ing i n g e s t where the f i l e o f f s e t i s guaranteed to
∗ be new .
∗
∗ Parameters :
∗ block_hash − The b l o c k hash in b inary form .
∗ k_entropy − An entropy va lue f o r the a s s o c i a t e d b lock , s c a l e d
∗ up by 1 ,000 f o r t h r e e decimal p l a ce p r e c i s i on .
∗ b l o c k_ l a b e l − Text i n d i c a t i n g the type o f the b l o c k or "" f o r
∗ no l a b e l .
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗ f i l e _ o f f s e t − The by t e o f f s e t i n t o the f i l e hash where the
∗ b l o c k hash i s l o c a t e d . A warning i s p r in t ed i f t h i s f i l e
∗ o f f s e t i s a l r eady pre sen t f o r the f i l e_hash .
∗/

void insert_hash (const std : : s t r i n g& block_hash ,
const uint64_t k_entropy ,
const std : : s t r i n g& block_label ,
const std : : s t r i n g& f i l e_hash ,
const uint64_t f i l e _ o f f s e t) ;

#ifndef SWIG
/∗∗
∗ I n s e r t or change the hash data a s s o c i a t e d wi th the block_hash .
∗ Use t h i s when merging e x i s t i n g s e t s o f f i l e o f f s e t s .
∗
∗ Parameters :

65

∗ block_hash − The b l o c k hash in b inary form .
∗ k_entropy − An entropy va lue f o r the a s s o c i a t e d b lock , s c a l e d
∗ up by 1 ,000 f o r t h r e e decimal p l a ce p r e c i s i on .
∗ b l o c k_ l a b e l − Text i n d i c a t i n g the type o f the b l o c k or "" f o r
∗ no l a b e l .
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗ sub_count − The number o f f i l e o f f s e t s to add f o r t h i s f i l e hash .
∗ f i l e _ o f f s e t s − A l i s t o f by t e o f f s e t s i n t o the f i l e hash where
∗ the b l o c k hash i s l o c a t e d . This l i s t can be t runca ted .
∗ This l i s t may or may not a l r eady be the r e .
∗/

void merge_hash (const std : : s t r i n g& block_hash ,
const uint64_t k_entropy ,
const std : : s t r i n g& block_label ,
const std : : s t r i n g& f i l e_hash ,
const uint64_t sub_count ,
const std : : set<uint64_t> f i l e _ o f f s e t s) ;

#endif

/∗∗
∗ Import hash or source in format ion from a JSON record .
∗
∗ Parameters :
∗ j s on_s t r ing − Hash or source t e x t in JSON format .
∗
∗ Example hash syntax :
∗ {
∗ " block_hash " : "c313ac . . . " ,
∗ "k_entropy " : 2500 ,
∗ " b l o c k_ l a b e l " : "W" ,
∗ " sou r c e_o f f s e t s " : [" b9e7 . . . " , 2 , [0 , 4096]]
∗ }
∗
∗ Example source syntax :
∗ {
∗ " f i l e_hash " : "b9e7 . . . " ,
∗ " f i l e s i z e " : 8000 ,
∗ " f i l e_ t y p e " : " exe " ,
∗ " zero_count " : 1 ,
∗ "nonprobative_count " : 4 ,
∗ "name_pairs " : [" r e po s i t o r y1 " , " f i l ename1 " , " repo2 " , " f2 "]
∗ }
∗
∗ Returns :
∗ "" e l s e error message i f JSON i s i n v a l i d .
∗/

std : : s t r i n g import_json (const std : : s t r i n g& j son_st r ing) ;

/∗∗
∗ See i f the f i l e hash i s in the database .
∗
∗ Returns :
∗ t rue i f the f i l e hash i s in the database .
∗/

bool has_source (const std : : s t r i n g& f i l e_hash) const ;

/∗∗
∗ Return the f i l e_hash o f the f i r s t source in the database .
∗
∗ Returns :
∗ f i l e_hash i f a f i r s t source i s a v a i l a b l e e l s e "" i f DB

66

∗ i s empty .
∗/

std : : s t r i n g f i r s t_ sou r c e () const ;

/∗∗
∗ Return the next source in the database . Error i f l a s t_ f i l e_hash
∗ does not e x i s t .
∗
∗ Parameters :
∗ l a s t_ f i l e_hash − The prev ious source f i l e hash in b inary form .
∗
∗ Returns :
∗ next f i l e_hash i f a next source i s a v a i l a b l e e l s e "" i f a t end .
∗/

std : : s t r i n g next_source (const std : : s t r i n g& f i l e_hash) const ;

/∗∗
∗ Return the s i z e s o f LMDB database s in the data s t o r e .
∗/

std : : s t r i n g s i z e () const ;

/∗∗
∗ Return the number o f records in the hash data s t o r e .
∗/

s i ze_t s ize_hashes () const ;

/∗∗
∗ Return the number o f sources .
∗/

s i ze_t s i z e_source s () const ;
} ;

// ∗∗
// scan
// ∗∗
/∗∗
∗ Manage LMDB scans . A l l i n t e r f a c e s are l o cked and t h r ead sa f e .
∗/

class scan_manager_t {

private :
lmdb_hash_data_manager_t∗ lmdb_hash_data_manager ;
lmdb_hash_manager_t∗ lmdb_hash_manager ;
lmdb_source_data_manager_t∗ lmdb_source_data_manager ;
lmdb_source_id_manager_t∗ lmdb_source_id_manager ;
lmdb_source_name_manager_t∗ lmdb_source_name_manager ;

// suppor t find_expanded_hash_json when op t imi z ing
locked_member_t∗ hashes ;
locked_member_t∗ s ou r c e s ;

// low− l e v e l f i n d i n t e r f a c e s
std : : s t r i n g find_expanded_hash_json (const bool opt imiz ing ,

const std : : s t r i n g& block_hash) ;
std : : s t r i n g find_hash_count_json (const std : : s t r i n g& block_hash) const ;
s td : : s t r i n g find_approximate_hash_count_json (

const std : : s t r i n g& block_hash) const ;
public :

#ifndef SWIG
// do not a l l ow copy or assignment
scan_manager_t (const scan_manager_t&) = delete ;

67

scan_manager_t& operator=(const scan_manager_t&) = delete ;
#endif

/∗∗
∗ Open hashdb f o r scanning .
∗
∗ Parameters :
∗ hashdb_dir − Path to the database to scan aga in s t .
∗/

scan_manager_t (const std : : s t r i n g& hashdb_dir) ;

/∗∗
∗ The de s t r u c t o r c l o s e s read−only data s t o r e re source s .
∗/

~scan_manager_t () ;

#ifndef SWIG
/∗∗
∗ Find hash , re turn hash and source in format ion .
∗
∗ Parameters :
∗ block_hash − The b l o c k hash in b inary form .
∗ k_entropy − An entropy va lue f o r the a s s o c i a t e d b lock , s c a l e d
∗ up by 1 ,000 f o r t h r e e decimal p l a ce p r e c i s i on .
∗ b l o c k_ l a b e l − Text i n d i c a t i n g the type o f the b l o c k or "" f o r
∗ no l a b e l .
∗ count − The t o t a l count o f f i l e o f f s e t s r e l a t e d to t h i s hash .
∗ s ou r c e_o f f s e t s − Set o f source sub−counts and f i l e o f f s e t s f o r
∗ each source a s s o c i a t e d wi th t h i s hash .
∗
∗ Returns :
∗ True i f the hash i s present , f a l s e i f not .
∗/

bool f ind_hash (const std : : s t r i n g& block_hash ,
uint64_t& k_entropy ,
std : : s t r i n g& block_label ,
uint64_t& count ,
source_o f f s e t s_t& sou r c e_o f f s e t s) const ;

#endif

/∗∗
∗ JSON block_hash expor t t e x t e l s e "" i f hash i s not t h e r e .
∗
∗ Parameters :
∗ block_hash − The b l o c k hash in b inary form .
∗
∗ Returns :
∗ JSON block_hash expor t s t r i n g i f hash i s present , f a l s e and ""
∗ i f not . Example syntax :
∗
∗ {
∗ " block_hash " : "c313ac . . . " ,
∗ "k_entropy " : 2500 ,
∗ " b l o c k_ l a b e l " : "W" ,
∗ "count " : 2 ,
∗ " sou r c e_o f f s e t s " : [" b9e7 . . . " , 2 , [0 , 4096]]
∗ }
∗/

std : : s t r i n g export_hash_json (const std : : s t r i n g& block_hash) const ;

/∗∗

68

∗ JSON f i l e_hash expor t t e x t e l s e "" i f f i l e hash i s not t h e r e .
∗
∗ Parameters :
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗
∗ Returns :
∗ JSON f i l e hash expor t t e x t i f f i l e hash i s present , f a l s e
∗ and "" i f not . Example syntax :
∗
∗ {
∗ " f i l e_hash " : "b9e7 . . . " ,
∗ " f i l e s i z e " : 8000 ,
∗ " f i l e_ t y p e " : " exe " ,
∗ " zero_count " : 1 ,
∗ "nonprobative_count " : 4 ,
∗ "name_pairs " : [" r e po s i t o r y1 " , " f i l ename1 " , " repo2 " , " f2 "]
∗ }
∗/

std : : s t r i n g export_source_json (const std : : s t r i n g& f i l e_hash) const ;

/∗∗
∗ Find hash count . Faster than find_hash . Accesses the hash
∗ in format ion s t o r e .
∗
∗ Parameters :
∗ block_hash − The b l o c k hash in b inary form .
∗
∗ Returns :
∗ The count o f source and o f f s e t e n t r i e s a s s o c i a t e d wi th t h i s hash .
∗/

s i ze_t find_hash_count (const std : : s t r i n g& block_hash) const ;

/∗∗
∗ Find the approximate hash count . Faster than find_hash , but can
∗ be wrong . Accesses the hash s t o r e .
∗
∗ Parameters :
∗ block_hash − The b l o c k hash in b inary form .
∗
∗ Returns :
∗ The count o f source and o f f s e t e n t r i e s expec ted to be a s s o c i a t e d
∗ with t h i s hash . This va lue can be wrong because t he r e can be
∗ c o l l i s i o n s wi th t runca ted hash va l u e s .
∗/

s i ze_t find_approximate_hash_count (const std : : s t r i n g& block_hash)
const ;

/∗∗
∗ Find source data f o r the g i ven source ID , f a l s e on no source ID .
∗
∗ Parameters :
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗ f i l e s i z e − The s i z e o f the source , in b y t e s .
∗ f i l e_ t y p e − A s t r i n g r ep r e s en t i n g the type o f the f i l e .
∗ zero_count − The count o f b l o c k s sk ipped because they on ly
∗ conta in the zero by t e .
∗ nonprobative_count − The count o f non−p ro ba t i v e hashes
∗ i d e n t i f i e d f o r t h i s source .
∗
∗ Returns :
∗ True i f f i l e b inary hash i s pre sen t .

69

∗/
bool f ind_source_data (const std : : s t r i n g& f i l e_hash ,

#ifde f SWIG
uint64_t& OUTPUT, // f i l e s i z e
std : : s t r i n g& OUTPUT, // f i l e_ t y p e
uint64_t& OUTPUT, // zero_count
uint64_t& OUTPUT // nonprobative_count

#else
uint64_t& f i l e s i z e ,
s td : : s t r i n g& f i l e_type ,
uint64_t& zero_count ,
uint64_t& nonprobative_count

#endif
) const ;

#ifndef SWIG
/∗∗
∗ Find source names f o r the g iven source ID , f a l s e on no source ID .
∗
∗ Parameters :
∗ f i l e_hash − The f i l e hash o f the source f i l e in b inary form .
∗ source_names − Set o f pa i r s o f repository_name , f i l ename
∗ a t t r i b u t e d to t h i s source ID .
∗
∗ Returns :
∗ True i f f i l e b inary hash i s pre sen t .
∗/

bool find_source_names (const std : : s t r i n g& f i l e_hash ,
source_names_t& source_names) const ;

#endif

/∗∗
∗ Find hash , re turn JSON t e x t e l s e "" i f not t h e r e .
∗
∗ Parameters :
∗ scan_mode − The mode to use f o r performing the scan . Contro l s
∗ scan op t im i za t i on and re turned JSON content .
∗ block_hash − The b l o c k hash in b inary form .
∗
∗ Returns :
∗ JSON t e x t i f hash i s present , f a l s e and "" i f not . Example

syntax
∗ based on mode :
∗ EXPANDED − always re turn a l l a v a i l a b l e data . Example syntax :
∗ {
∗ " block_hash " : "c313ac . . . " ,
∗ "k_entropy " : 2500 ,
∗ " b l o c k_ l a b e l " : "W" ,
∗ "count " : 2 ,
∗ " source_ l i s t_id " : 57 ,
∗ " sources " : [{
∗ " f i l e_hash " : " f7035a . . . " ,
∗ " f i l e s i z e " : 800 ,
∗ " f i l e_ t y p e " : " exe " ,
∗ " zero_count " : 1 ,
∗ "nonprobative_count " : 2 ,
∗ "names " : [" r e po s i t o r y1 " , " f i l ename1 " , " repo2 " , " f2 "]
∗ }] ,
∗ " sou r c e_o f f s e t s " : [" b9e7 . . . " , 2 , [0 , 4096]]
∗ }
∗ EXPANDED_OPTIMIZED − re turn a l l a v a i l a b l e data the f i r s t time

70

∗ but suppress hash and source data a f t e r . Example syntax
∗ when suppressed :
∗ { " block_hash " : "c313ac . . . " }
∗ COUNT − Return the count o f source o f f s e t s a s s o c i a t e d wi th t h i s
∗ hash . Example syntax :
∗ { " block_hash " : "c313ac . . . " , " count " : 1 }
∗ APPROXIMATE_COUNT − Return the approximate count o f source
∗ o f f s e t s a s s o c i a t e d wi th t h i s hash . The approximate count
∗ i s l o g a r i t hm i c and can be wrong because t he r e can be

c o l l i s i o n s
∗ with t runca ted hash va l u e s . Faster than COUNT because i t
∗ acce s s e s the hash_store . Example syntax :
∗ { " block_hash " : "c313ac . . . " , "approximate_count " : 1 }
∗/

std : : s t r i n g find_hash_json (const scan_mode_t scan_mode ,
const std : : s t r i n g& block_hash) ;

/∗∗
∗ Return the f i r s t b l o c k hash in the database .
∗
∗ Returns :
∗ block_hash i f a f i r s t hash i s a v a i l a b l e e l s e "" i f DB i s empty .
∗/

std : : s t r i n g f i r s t_hash () const ;

/∗∗
∗ Return the next b l o c k hash in the database . Error i f l a s t hash
∗ does not e x i s t .
∗
∗ Parameters :
∗ l as t_b lock_hash − The prev ious b l o c k hash in b inary form .
∗
∗ Returns :
∗ block_hash i f a next hash i s a v a i l a b l e e l s e "" i f a t end .
∗/

std : : s t r i n g next_hash (const std : : s t r i n g& block_hash) const ;

/∗∗
∗ Return the f i l e_hash o f the f i r s t source in the database .
∗
∗ Returns :
∗ f i l e_hash i f a f i r s t source i s a v a i l a b l e e l s e "" i f DB
∗ i s empty .
∗/

std : : s t r i n g f i r s t_ sou r c e () const ;

/∗∗
∗ Return the next source in the database . Error i f l a s t_ f i l e_hash
∗ does not e x i s t .
∗
∗ Parameters :
∗ l a s t_ f i l e_hash − The prev ious source f i l e hash in b inary form .
∗
∗ Returns :
∗ next f i l e_hash i f a next source i s a v a i l a b l e e l s e "" i f a t end .
∗/

std : : s t r i n g next_source (const std : : s t r i n g& f i l e_hash) const ;

/∗∗
∗ Return the s i z e s o f LMDB database s in JSON format .
∗/

71

std : : s t r i n g s i z e () const ;

/∗∗
∗ Return the number o f hash records .
∗/

s i ze_t s ize_hashes () const ;

/∗∗
∗ Return the number o f sources .
∗/

s i ze_t s i z e_source s () const ;
} ;

// ∗∗
// scan_stream
// ∗∗
/∗∗
∗ Provide a threaded streaming scan i n t e r f a c e . Use put to enqueue
∗ arrays o f scan input . Use ge t to r e c e i v e arrays o f scan output .
∗
∗ I f a thread cannot p rope r l y parse unscanned data , i t w i l l emit a
∗ warning to s t d e r r .
∗/

class scan_stream_t {
private :
const int num_threads ;
: : pthread_t∗ threads ;
scan_stream : : scan_thread_data_t∗ scan_thread_data ;
bool done ;

#ifndef SWIG
// do not a l l ow copy or assignment
scan_stream_t (const scan_stream_t&) ;
scan_stream_t& operator=(const scan_stream_t&) ;

#endif

public :
/∗∗
∗ Create a streaming scan s e r v i c e .
∗
∗ Parameters :
∗ scan_manger − The hashdb scan manager to use f o r scanning .
∗ hash_size − The s i z e , in by tes , o f a b inary hash , 16 f o r MD5.
∗ scan_mode − The mode to use f o r performing the scan . Contro l s
∗ scan op t im i za t i on and re turned JSON content .
∗/

scan_stream_t (hashdb : : scan_manager_t∗ const scan_manager ,
const s i ze_t hash_size ,
const hashdb : : scan_mode_t scan_mode) ;

/∗∗
∗ Release scan_stream resource s .
∗/

~scan_stream_t () ;

/∗∗
∗ Submit a s t r i n g con ta in ing an array o f records to scan .
∗
∗ Paramters :
∗ unscanned_data − An array o f records to scan , packed wi thout
∗ d e l im i t e r s . Each record conta ins :

72

∗ − A binary hash to scan for , o f l e n g t h hash_size .
∗ − A 2−by t e unsigned i n t e g e r in nat ive−Endian format i n d i c a t i n g
∗ the l eng th , in by tes , o f the upcoming b inary l a b e l a s s o c i a t e d
∗ with the scan record .
∗ − A binary l a b e l a s s o c i a t e d wi th the scan record , o f the
∗ l e n g t h j u s t i nd i c a t e d .
∗/

void put (const std : : s t r i n g& unscanned_data) ;

/∗∗
∗ Receive a s t r i n g con ta in ing an array o f records o f matched scanned
∗ data or "" i f no data i s a v a i l a b l e .
∗
∗ Returns :
∗ An array o f records o f matched scanned data or "" i f no data
∗ i s a v a i l a b l e . Each record conat ins :
∗ − A binary hash t ha t matched , o f l e n g t h hash_size .
∗ − A 2−by t e unsigned i n t e g e r in nat ive−Endian format i n d i c a t i n g
∗ the l eng th , in by tes , o f the upcoming b inary l a b e l a s s o c i a t e d
∗ with the hash t ha t matched .
∗ − A binary l a b e l a s s o c i a t e d wi th the scan record , o f the
∗ l e n g t h j u s t i nd i c a t e d .
∗ − A 4−by t e unsigned i n t e g e r in nat ive−Endian format i n d i c a t i n g
∗ the l eng th , in by tes , o f the upcoming JSON t e x t a s s o c i a t e d
∗ with the hash t ha t matched .
∗ − JSON t e x t format ted based on the scan mode s e l e c t e d , o f the
∗ l e n g t h j u s t i nd i c a t e d .
∗/

std : : s t r i n g get () ;

/∗∗
∗ Returns t rue i f scan_stream i s empty , meaning t ha t t h e r e i s no
∗ unscanned data l e f t to scan and the r e i s no scanned data l e f t to
∗ r e t r i e v e . I f not empty , a thread y i e l d i s i s su ed so t ha t the
∗ c a l l e r can busy−wai t wi th l e s s waste .
∗
∗ Returns :
∗ t rue i f scan_stream i s empty .
∗/

bool empty () ;
} ;

// ∗∗
// timestamp
// ∗∗
/∗∗
∗ Provide a timestamp s e r v i c e .
∗/

class timestamp_t {

private :
struct t imeva l ∗ t0 ;
struct t imeva l ∗ t_last_timestamp ;

public :

/∗∗
∗ Create a timestamp s e r v i c e .
∗/

timestamp_t () ;

73

/∗∗
∗ Release timestamp resource s .
∗/

~timestamp_t () ;

#ifndef SWIG
// do not a l l ow copy or assignment
timestamp_t (const timestamp_t&) = delete ;
timestamp_t& operator=(const timestamp_t&) = delete ;

#endif

/∗∗
∗ Create a named timestamp and re turn a JSON s t r i n g in format
∗ {"name":"name" , " d e l t a " : de l t a , " t o t a l " : t o t a l } .
∗/

std : : s t r i n g stamp (const std : : s t r i n g &name) ;
} ;

}

#endif

74

	Introduction
	Overview of hashdb
	Intended Audience
	hashdb Resources
	Conventions Used in this Manual
	Changes Over the hashdb v2.0.1 Release
	Licensing
	Obtaining hashdb
	Installing on Windows
	Installing on Linux or Mac
	Quickstart Guide

	How hashdb Works
	Block Hash
	Blacklist Data
	Repository Names
	Forensic Data
	Recursive Extraction
	Recursion Path
	File Hash
	Managing False Positives
	Building a hashdb Database
	Scanning
	Contents of a Hash Database
	Database Settings
	Maintaining Database Integrity

	Running the hashdb Tool
	Creating a New Hash Database
	create

	Importing and Exporting
	ingest
	import_tab
	import
	export

	Database Manipulation
	add
	add_multiple
	add_repository
	add_range
	intersect
	intersect_hash
	subtract
	subtract_hash
	subtract_repository

	Scan Services
	scan_list
	scan_hash
	scan_media

	Statistics
	size
	sources
	histogram
	duplicates
	hash_table
	read_media

	Performance Analysis
	add_random
	scan_random
	add_same
	scan_same

	Tools that use hashdb
	SectorScope
	The SectorScope Autopsy Plug-in
	Installing the SectorScope Plug-in
	Configuring the SectorScope Plug-in

	bulk_extractor

	Use Cases for hashdb
	Querying for Source or Database Information
	Writing Software that works with hashdb
	Scanning or Importing to a Database Using bulk_extractor
	Updating Hash Databases
	Exporting Hash Databases
	Sharding Hash Databases

	hashdb Input/Output Syntax
	General Output Conventions
	Tab-delimited Import File
	Import/Export Syntax
	Source Data
	Block Hash Data

	Scan Data
	Expanded Hash
	Expanded Hash, Optimized
	Hash Count
	Approximate Hash Count

	Scan Data Output from Tools
	Scan Stream Interface Data
	Scan List Input File
	Size
	Sources
	Histogram
	Duplicates
	Hash Table
	Read Media
	Timing
	Database Changes

	Using the hashdb Library APIs
	Data Types
	Settings
	Support Functions
	Import
	Scan
	Scan Stream
	Timestamp

	LMDB Data Stores
	LMDB Hash Store
	LMDB Hash Data Store
	LMDB Source ID Store
	LMDB Source Data Store
	LMDB Source Name Store
	Data Store Changes

	Alternate Configurations
	Appendices
	hashdb Quick Reference
	Output of the hashdb Help Command
	hashdb C++ API: hashdb.hpp

