
hashdb

USERS MANUAL

Quickstart Guide Included
December 8, 2014

Authored by:
Bruce D. Allen

Jessica R. Bradley
Simson L. Garfinkel

One Page Quickstart for Windows Users

This page provides a very brief introduction to downloading, installing and running
hashdb on Windows systems.

1. Download the windows installer for the latest version of hashdb. It can be ob-
tained from http://digitalcorpora.org/downloads/hashdb. The file is named
hashdb-x.y.z-windowsinstaller.exe where x.y.z is the latest version.

2. Run the installer file. This will automatically install hashdb on your machine.

3. Navigate to the directory where you would like to create a hash database. Then,
to run hashdb from the command line, type the following instructions:

� hashdb create sample.hdb

In the above instructions, sample.hdb is the empty database that will be created
with default database settings.

4. Next, import data into the database. You will need a DFXML file containing sector
hash values. If you do not already have one, see Subsection 2.2 for instructions
on creating one. To populate the hash database with the hashes from the DFXML
file called sample.xml, type the following instructions from the directory where
you created the database:

� hashdb import sample.xml sample.hdb

This command, if executed successfully, will print the number of hash values in-
serted. For example:

hashdb changes (insert):
hashes inserted: 2595

5. Additionally, the file log.xml contained in the directory sample.hdb will be up-
dated with change statistics. It will show the number of hash values that have
been inserted [see Subsection 4.5 for more information on the change statistics
tracked in the log file].

ii

http://digitalcorpora.org/downloads/hashdb

One Page Quickstart for Linux and Mac Users

This page provides a very brief introduction to downloading, installing and running
hashdb (creating a database and populating it) on Linux and MacOS systems.

1. Download the latest version of hashdb. It can be obtained from http://digitalcorpora.
org/downloads/hashdb. The file is called hashdb-x.y.z.tar.gz where x.y.z is the
latest version.

2. Un-tar and un-zip the file. In the newly created hashdb-x.y.z directory, run the
following commands:

� ./configure
� make
� sudo make install

Note, users will likely need to first download and install dependent library files.
Instructions are outlined in the referenced section. [Refer to Section 3].

3. Navigate to the directory where you would like to create a hash database. Then,
to run hashdb from the command line, type the following instructions:

� hashdb create sample.hdb

In the above instructions, sample.hdb is the empty database that will be created
with default database settings.

4. Next, import data into the database. You will need a DFXML file containing block
hash values. If you do not already have one, see Subsection 2.2 for instructions
on creating one. To populate the hash database with the hashes from the DFXML
file called sample.xml, type the following instructions from the directory where
you created the database:

� hashdb import sample.xml sample.hdb

This command, if executed successfully, will print the number of hash values in-
serted. For example:

hashdb changes (insert):
hashes inserted: 2595

5. Additionally, the file log.xml contained in the directory sample.hdb will be up-
dated with change statistics. It will show the number of hash values that have
been inserted [see Subsection 4.5 for more information on the change statistics
tracked in the log file].

iii

http://digitalcorpora.org/downloads/hashdb
http://digitalcorpora.org/downloads/hashdb

Contents

1 Introduction 1
1.1 Overview of hashdb . 1
1.2 Purpose of this Manual . 2
1.3 Conventions Used in this Manual . 2

2 How hashdb Works 2
2.1 Hash Blocks . 3
2.2 DFXML . 4

2.2.1 Creating a DFXML file using md5deep 4
2.2.2 Creating a DFXML file using fiwalk 5
2.2.3 Creating a DFXML file using hashdb 6

2.3 Contents of a Hash Database . 6
2.4 Using the Hash Databases . 7
2.5 bulk_extractor . 7

2.5.1 Forensic Path . 7

3 Installation Guide 8
3.1 Installing on Linux or Mac . 8
3.2 Installing on Windows . 9
3.3 Installing Other Related Tools . 10

4 Running hashdb 11
4.1 General Usage . 11
4.2 Creating a Hash Database . 12
4.3 Importing and Exporting . 14
4.4 Database Manipulation . 15

4.4.1 Tracking Changes in Hash Databases 16
4.5 Scan Services . 16
4.6 Statistics . 21
4.7 Tuning . 21
4.8 Performance Analysis . 21
4.9 Importing and Scanning Using the bulk_extractor hashdb Scanner . . 23

5 Use Cases for hashdb 26
5.1 Querying for Source or Database Information 26

5.1.1 Querying a Remote Hash Database 26
5.2 Writing Software that works with hashdb 27
5.3 Scanning or Importing to a Database Using bulk_extractor 27
5.4 Updating Hash Databases . 28

5.4.1 Update Commands and “Duplicate” Hashes 28
5.5 Optimizing a Hash Database . 28
5.6 Exporting Hash Databases . 29

6 Worked Example: Finding Similarity Between Disk Images 30

7 Troubleshooting 32

8 Related Reading 32

iv

Appendices 34

A hashdb Quick Reference 34

B Output of hashdb Help Command 35

C hashdb API: hashdb.hpp 42

D bulk_extractor hashdb Scanner Usage Options 46

v

1 Introduction

1.1 Overview of hashdb

hashdb is a tool that can be used to find data in raw media using cryptographic hashes
calculated from blocks of data. It is a useful forensic investigation tool for tasks such
as malware detection, child exploitation detection or corporate espionage investigations.
The tool provides several capabilities that include:

• Creating hash databases of MD5 block hashes, as opposed to file hashes.

• Importing hash values from Digital Forensic XML (DFXML) files created by other
programs such as md5deep or fiwalk.

• Scanning the hash database for matching hash values using either the local or
remote system.

• Providing the source information for hash values.

Using hashdb, a forensic investigator can take a known set of blacklisted media and gen-
erate a hash database. The investigator can then use the hash database to search against
raw media for blacklisted information. For example, given a known set of malware, an
investigator can generate a sector hash database representing that malware. The inves-
tigator can then search a given corpus for fragments of that malware and identify the
specific malware content in the corpus using hashdb and the bulk_extractor program.

hashdb relies on block hashing rather than full file hashing. Block hashing provides an
alternative methodology to file hashing with a different capability set. With file hashing,
the file must be complete to generate a file hash, although a file carver can be used to
pull together a file and generate a valid hash. File hashing also requires the ability to
extract files, which requires being able to understand the file system used on a particular
storage device. Block hashing, as an alternative, does not need a file system or files.
Artifacts are identified at the block scale (usually 4096 bytes) rather than at the file
scale. While block hashing does not rely on the file system, artifacts do need to be
sector-aligned for hashdb to find hashes [3].

hashdb provides an advantage when working with hard disks and operating systems that
fragment data into discontiguous blocks yet still sector-align media. This is because
scans are performed along sector boundaries. Because hashdb works at the block reso-
lution, it can find part of a file when the rest of the file is missing, such as with a large
video file where only part of the video is on disk. hashdb can also be used to analyze
network traffic (such as that captured by tcpflow). Finally, hashdb can identify artifacts
that are sub-file, such as embedded content in a .pdf document.

hashdb stores cryptographic hashes (along with their source information) that have been
calculated from hash blocks. It also provides the capability to scan other media for
hash matches. Many of the capabilities of hashdb are best utilized in connection with
the bulk_extractor program. This manual describes uses cases for the hashdb tools,
including its uses with bulk_extractor and demonstrates how users can take full ad-
vantage of all of its capabilities.

1

1.2 Purpose of this Manual

This Users Manual is intended to be useful to new, intermediate and experienced users
of hashdb. It provides an in-depth review of the functionality included in hashdb and
shows how to access and utilize features through command line operation of the tool.
This manual includes working examples with links to the input data used, giving users
the opportunity to work through the examples and utilize all aspects of the system.

1.3 Conventions Used in this Manual

This manual uses standard formatting conventions to highlight file names, directory
names and example commands. The conventions for those specific types are described
in this section.

Names of programs including the post-processing tools native to hashdb and third-party
tools are shown in bold, as in bulk_extractor.

File names are displayed in a fixed width font. They will appear as filename.txt within
the text throughout the manual.

Directory names are displayed in italics. They appear as directoryname/ within the text.
The only exception is for directory names that are part of an example command. Di-
rectory names referenced in example commands appear in the example command format.

Database names are denoted with bold, italicized text. They are always specified in
lower-case, because that is how they are referred in the options and usage information
for hashdb. Names will appear as databasename .

This manual contains example commands that should be typed in by the user. A com-
mand entered at the terminal is shown like this:

� command

The first character on the line is the terminal prompt, and should not be typed. The
black square is used as the standard prompt in this manual, although the prompt shown
on a users screen will vary according to the system they are using.

2 How hashdb Works

The hashdb tool provides capabilities to create, edit, access and search databases of
cryptographic hashes created from hash blocks. The cryptographic hashes are imported
into a database from DFXML files created by other programs (which could include
md5deep) or exported from another hashdb database. hashdb databases can also be
populated using bulk_extractor and the hashdb scanner. Once a databases is cre-
ated, hashdb provides users with the capability to scan the database for matching hash
values and identify matching content. Hash databases can also be exported, added to,
subtracted from and shared.

Figure 1 provides an overview of the capabilities included with the hashdb tool. hashdb
populates databases from DFXML files created by other programs. The sources of those

2

Hash
Database

Blacklist
Files

DFXML
File

Raw
Media

Match
Hash

Values
Matching

Hash
Values

Create &
Populate
Hash DB

API
Library

3rd Party
Programs

hashdb

DFXML
File

Export

Disk Image
Files

Disk Image
Files

Figure 1: Overview of the hashdb system

|-512-|-512-|-512-|-512-|-512-|-512-|-512-|-512-|-512-|-512-| ...

|-----------------------4K----------------------|
|-----------------------4K----------------------|

|-----------------------4K----------------------|

etc.

Figure 2: Hashes generated over overlapping sector boundaries. 4K lines represent the
hash blocks.

files can be virtually any type of raw digital media including black list files and disk
images. Users can also add or remove data from the database after it is created. Once
the database is populated, hashdb can export content from the database in DFXML
format. It also provides an API that can be used by third party tools (as it is used in
the bulk_extractor program) to create, populate and access hash databases. Finally,
hashdb allows users to scan the hash database for matching hash values.

2.1 Hash Blocks

hashdb relies on block hashing rather than file hashing. A hash block is a contiguous
sequence of bytes, typically 4KiB in size. Tools using block hashing calculate crypto-
graphic hashes from hash blocks, along with information about where the hash blocks
are sourced from. To increase the probability of finding matching hashes in sector-based
disk images, hashes are generated at each sector boundary. Figure 2 illustrates crypto-
graphic hashes generated from 4KiB hash blocks aligned on 512 byte sector boundaries.
Block size is selectable in tools such as md5deep. In our work, we use a block size of
4KiB.

3

Listing 1: Excerpt of a DFXML report file showing the MD5 output
<fileobject >

<filename >/home/bdallen/demo/mock_video.mp4 </filename >
<filesize >10630146 </ filesize >
<ctime >2014 -01 -30 T20 :20:39Z</ctime >
<mtime >2014 -01 -30 T19 :04:59Z</mtime >
<atime >2014 -01 -30 T20 :04:52Z</atime >
<byte_run file_offset=’0’ len=’4096’>

<hashdigest type=’MD5 ’ >63641 a3c008a3d26a192c778dd088868 </ hashdigest >
</byte_run >
<byte_run file_offset =’4096’ len=’4096’>

<hashdigest type=’MD5 ’>c7dd2354e223c10856469e27686b8c6b </ hashdigest >
</byte_run >
<byte_run file_offset =’8192’ len=’4096’>

<hashdigest type=’MD5 ’>ff540fda05d008ccebf2cca2ec71571d </ hashdigest >
</byte_run >
<byte_run file_offset =’12288’ len=’4096’>

<hashdigest type=’MD5 ’>d3de47d704e85e0f61a91876236593d3 </ hashdigest >

...

<byte_run file_offset = ’10625024 ’ len=’4096’>
<hashdigest type=’MD5 ’>d2d958b44c481cc41b0121b3b4afae85 </ hashdigest >

</byte_run >
<byte_run file_offset = ’10629120 ’ len=’1026’>

<hashdigest type=’MD5 ’ >4640564 a8655d3b201a85b4a76411b00 </ hashdigest >
</byte_run >
<hashdigest type=’MD5 ’>a003483521c181d26e66dc09740e939d </ hashdigest >

</fileobject >

2.2 DFXML

hashdb can be used to populate hash databases by importing block hashes from DFXML
files. DFXML is an XML language designed to represent a wide range of forensic infor-
mation and forensic processing results. It allows the sharing of structured information
between independent tools and organizations [2].

Note that hashdb does not require DFXML files to import hashes. The bulk_extractor
hashdb scanner can import hashes directly into a new hash database, see subsection 4.9
for importing using the bulk_extractor hashdb scanner. Also, third party tools can
be created for importing hashes directly into a hash database by interfacing with the
hashdb library API, see autorefusingSection.

2.2.1 Creating a DFXML file using md5deep

Themd5deep tool creates cryptographic hashes from hash blocks and produces DFXML
files. Listing 1 shows an excerpt of the DFXML file created by md5deep. The portion
of the file of interest to hashdb is contained in the “byte_run” tag. The “file_offset”
attribute is the number of bytes into the file where the cryptographic block hash was
calculated. The “len” attribute indicates the size of the block. The “hashdigest” tag
identifies that hash algorithm (MD5) and the long hexadecimal hash value. The “file-
name” tag indicates the filename to which the hashes can be attributed.

4

Users may create DFXML files to import hashes from by using the md5deep tool.
md5deep is available at http://md5deep.sourceforge.net. For additional instruc-
tions on downloading and installing md5deep, go to http://github.com/simsong/
hashdb/wiki/Installing-md5deep.

Choose a file or directory to use as the source of data for the hash file output. For
this manual, we use the file mock_video.mp4 available at http://digitalcorpora.
org/downloads/hashdb/demo/. Then, run md5deep with the following command:

� md5deep -p 4096 -d mock_video.mp4 > mock_video.xml

The above command specifies:

• a block size of 4096 bytes (-p option)

• that the hash output will be written to a DFXML file (-d option)

• to write the output to the file mock_video.xml. The > symbol specification writes
the output into the file

The file mock_video.xml will be used in the next step to create the hash database.
However, any DFXML file containing block hash values can be used in hashdb.

Note, for this example we are using only one file to populate the DFXML. However,
users will typically be creating a block hash file from thousands of files in hundred of
directories. To create a block hash file that recursively includes all files and directories
contained within a directory, use the commandmdf5deep -r <directoryname> along
with the other options specified above.

2.2.2 Creating a DFXML file using fiwalk

The fiwalk tool can create block hashes of files in filesystems in an image, see http:
//www.forensicswiki.org/wiki/Fiwalk. fiwalk is part of The Sleuth Kit R© (TSK),
available from https://github.com/sleuthkit/sleuthkit.

For example run fiwalk with the following command:

� fiwalk -x -S 4096 my_image.E01 > my_image.xml

The above command specifies:

• Send output to stdout -x option.

• Perform sector hashes every 4096 bytes -s option.

• Perform sector hashes on the file system in the my_image.E01 image.

• Direct output to file my_image.xml.

5

http://md5deep.sourceforge.net
http://github.com/simsong/hashdb/wiki/Installing-md5deep
http://github.com/simsong/hashdb/wiki/Installing-md5deep
http://digitalcorpora.org/downloads/hashdb/demo/
http://digitalcorpora.org/downloads/hashdb/demo/
http://www.forensicswiki.org/wiki/Fiwalk
http://www.forensicswiki.org/wiki/Fiwalk
https://github.com/sleuthkit/sleuthkit

2.2.3 Creating a DFXML file using hashdb

The export command of the hashdb tool writes out the block hashes in a hash database
along with their source information.

For example run hashdb with the following command:

� hashdb export mock_video.hdb demoVideoHashes.xml

The above command specifies to export hashes and their source information from hash
databse mock_video.hdb to DFXML file demoVideoHashes.xml.

2.3 Contents of a Hash Database

Each hashdb database is contained in a directory called <databasename>.hdb and con-
tains a number of files. These files are:

Bloom_filter_1
hash_store
history.xml
log.xml
settings.xml
source_filename_store.dat
source_filename_store.idx1
source_filename_store.idx2
source_lookup_store.dat
source_lookup_store.idx1
source_lookup_store.idx2
source_metadata_store
source_repository_name_store.dat
source_repository_name_store.idx1
source_repository_name_store.idx2

These files include XML files containing configuration settings and logs, a Bloom filter
file used for improving the speed of hash lookups, binary files containing stored hashes
from multiple sources and binary files that allow lookup of hash source names. Of these
files, the history, settings, and log files may be of interest to the user:

• log.xml
Every time a command is run that changes the content of the database, this file
is replaced with a log of the run. The log includes the command name, informa-
tion about hashdb including the command typed and how hashdb was compiled,
information about the operating system hashdb was just run on, timestamps indi-
cating how much time the command took, and the specific hashdb changes applied,
described in more detail in section 4.

• history.xml
The purpose of this file is to provide full attribution for a database. Every hashdb
command executed that changes the state of the database is logged into the
log.xml file and is appended to the history.xml file. For hashdb commands
that involve manipulations from another database (or from two databases, as is
the case with the add_multiple command), the history file of those databases are

6

also appended. It can be difficult to follow the history.xml file because of its
XML format, but it provides full attribution nonetheless.

• settings.xml
This file contains the settings requested by the user when the block hash database
was created, see hashdb settings and Bloom filter settings options. This file also
contains internal hashdb configuration and versioning information that is specific
to how the hashdb tool was compiled.

2.4 Using the Hash Databases

hashdb provides the capability for users to scan the database for matching hash blocks
locally or remotely via a socket. Users can also query for hash source information and
information about the hash database itself. hashdb provides an API to access the import
and scan capabilities. The import capability allows third party tools to create a new
database at a specified directory, import an array of hashes with source information
and write changes to the log.xml file. The scan capability provided by the API allows
third party tools to open an existing database and perform a scan. Most importantly,
the bulk_extractor hashdb scanner uses the hashdb API to provide users with the
capability to create databases from disk images or scan digital media and find matching
hash blocks within the data bulk_extractor is processing. In later sections, this
manual describes the methods for using bulk_extractor together with the hashdb
tool.

2.5 bulk_extractor

bulk_extractor is an open source digital forensics tool that extracts features such
as email addresses, credit card numbers, URLs and other types of information from
digital evidence files. It operates on disk images, files or a directory of files and ex-
tracts useful information without parsing the file system or file system structures. For
more information on how to use bulk_extractor for a wide variety of applications,
refer to the separate publication The bulk_extractor Users Manual available at http:
//digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf [1].

bulk_extractor has multiple scanners that extract features. One particular scanner,
the hashdb scanner links the full set of bulk_extractor capabilities directly to the
hashdb tool. The hashdb scanner uses the hashdb API to create and import data into
hash databases directly from the data processed by bulk_extractor. The scanner also
can be run with a hash database as input (again using the hashdb API) will scan the
data processed by bulk_extractor for matching hash values.

2.5.1 Forensic Path

The bulk_extractor program introduced the concept of the “forensic path”. The foren-
sic path is a description of the origination of a piece of data. It might come from, for
example, a flat file, a data stream, or a decompression of some type of data. Consider
an HTTP stream that contains a GZIP-compressed email as shown in Figure 3. A
series of bulk_extractor scanners will first find the ZLIB compressed regions in the
HTTP stream that contain the email, decompress them, and then find the features in
that email which may include email addresses, names and phone numbers. Using this

7

http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf
http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf

Listing 2: Forensic Path of email address features found in bulk_extractor
11052168704 - GZIP -3437 live.com eMn=’domexuser@live.com ’;var srf_sDispM
11052168704 - GZIP -3475 live.com pMn=’domexuser@live.com ’;var srf_sDreCk
11052168704 - GZIP -3512 live.com eCk=’domexuser@live.com ’;var srf_sFT=’<

HTTP
Stream

GZIP
Compressed

Email

Decompressed
Email Text

(Sent over
network, not ondisk)

(In browser
cache on disk)

(stored inbulk_extractormemory)
Email Address,
Name & Phone

Number

(Extracted from
decompressed
memory and

stored in feature
file)

Figure 3: Forensic path of features found in email lead back to HTTP Stream

method, bulk_extractor can find email addresses in compressed data. The forensic
path for the email addresses found indicate that it originated in an email, that was GZIP
compressed and found in an HTTP stream. The forensic path of the email addresses
features found might be represented as shown in the example feature file in Listing 2. It
is worth nothing that the hashdb scanner can recognize a matching block embedded in
part of another file. No other existing digital forensic tool can do this; other tools find
only completely unembedded files.

3 Installation Guide

hashdb is a command line tool that can be run on Linux, MacOS or Windows systems.
Here we describe the installation procedures for those systems. Steps include how to
install the required dependencies as well as download hashdb and compile the release or
run the executable.

3.1 Installing on Linux or Mac

Before compiling hashdb for your platform, you may need to install other packages on
your system which hashdb requires to compile cleanly and with a full set of capabilities.

Dependencies for Linux
The following commands should add the appropriate packages:

8

� sudo yum update
� sudo yum groupinstall development-tools
� sudo yum install gcc-c++
� sudo yum install libxml2-devel openssl-devel tre-devel boost-devel

Dependencies for Mac Systems
Mac users must first install Apple’s Xcode development system. Other components
should be downloaded using the MacPorts system. If you do not have MacPorts, go to
the App store and download and install it. It is free. Once it is installed, try:

� sudo port install autoconf automake libxml2

Download and Install hashdb
Next, download the latest version of hashdb. The software can be downloaded from http:
//digitalcorpora.org/downloads/hashdb/. The file to download is hashdb-x.y.z.tar.gz
where x.y.z is the latest version. As of publication of this manual, the latest version of
hashdb is 1.1.1.

After downloading the file, un-tar it by either right-clicking on the file and choosing
“extract to...’ or typing the following at the command line:

� tar -xvf hashdb-x.y.z.tar.gz

Then, in the newly created hashdb-x.y.z directory, run the following commands to install
hashdb in /usr/local/bin (by default):

� ./configure
� make
� sudo make install

hashdb is now installed on your system and can be run from the command line.

Note: sudo is not required. If you do not wish to use sudo, build and install hashdb and
bulk_extractor in your own space at “$HOME/local” using the following commands:

� ./configure --prefix=$HOME/local/ --exec-prefix=$HOME/local CPPFLAGS=-
I$HOME/local/include/ LDFLAGS=-L$HOME/local/lib/

� make
� make install

3.2 Installing on Windows

Windows users should download the Windows Installer for hashdb. The file to download
is located at http://digitalcorpora.org/downloads/hashdb and is called hashdb-x.y.
z-windowsinstaller.exe where x.y.z is the latest version number (1.1.1 as of publica-
tion of this manual).

You should close all Command windows before running the installation executable. Win-
dows will not be able to find the hashdb tools in a Command window if any are open
during the installation process. If you do not do this before installation, simply close all
Command windows after installation. When you re-open, Windows should be able to
find hashdb.

9

http://digitalcorpora.org/downloads/hashdb/
http://digitalcorpora.org/downloads/hashdb/
http://digitalcorpora.org/downloads/hashdb

Figure 4: Windows 8 warning when trying to run the installer. Select “More Info” and
then “Run Anyway.”

Figure 5: Dialog appears when the user executes the Windows Installer. Select the
default configuration.

Next run the hashdb-x.y.z-windowsinstaller.exe file. This will automatically install
hashdb on your machine. SomeWindows safeguards may try to prevent you from running
it. Figure 4 shows the message Windows 8 displays when trying to run the installer. To
run anyway, click on “More info” and then select “Run Anyway.”

When the installer file is executed, the installation will begin and show a dialog like the
one shown in Figure 5. Users should select the default configuration, which will be the
64-bit configuration for 64-bit Windows systems, or the 32-bit configuration for 32-bit
Windows systems. Click on “Install’ and the installer will install hashdb on your system
and then notify you when it is complete. hashdb is now installed on your system can be
run from the command line.

3.3 Installing Other Related Tools

Download and Install bulk_extractor
The bulk_extractor hashdb scanner provides the capability to import block hashes
into a new hash database and to scan for hashes against an existing hash database.
This scanner is included in bulk_extractor version 1.4.5 or later. For detailed instruc-
tions on downloading and installing bulk_extractor, please refer to the Users Manual

10

found at http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.
pdf. Note: hashdb must be installed first for bulk_extractor to build properly with
hashdb. bulk_extractor will automatically install the hashdb scanner but only if the
hashdb library has been installed. Otherwise, bulk_extractor will build without the
hashdb scanner. To check that the hashdb scanner is enabled, observe that is enabled
in the output of running ./configure or type bulk_extractor -h and look for hashdb
setting options.

Download and Install md5deep
md5deep is available at https://github.com/jessek/hashdeep/releases/tag/release-
4.4. Additional platform-specific installation structions are provided at https://github.
com/simsong/hashdb/wiki/Installing-md5deep.

Download and Install fiwalk
Please see http://www.forensicswiki.org/wiki/Fiwalk. fiwalk is part of The Sleuth
Kit R© (TSK), available from https://github.com/sleuthkit/sleuthkit.

4 Running hashdb

The core capabilities provided by hashdb involve creating and maintaining a database of
hash values and scanning media for those hash values. To perform those tasks, hashdb
users need to start by building a database (if an existing database is not available for
use). Users then import hashes using a DFXML file or by using the bulk_extractor
hashdb scaner, and then possibly merge or subtract hashes to obtain the desired set of
hashes to scan against. Users then scan for hashes that match. Additional commands
are provided to support statistical analysis, performance tuning and performance anal-
ysis.

This section describes hashdb commands, along with examples, for performing these
tasks. For more examples of command usage, please see section 5. For a hashdb
quick reference summary, please see Appendix A or http://digitalcorpora.org/
downloads/hashdb/hashdb_quick_reference.pdf.

4.1 General Usage

Some options apply generically to multiple commands, see Table 1.

Option -q suppresses progress output for commands that print progress.

Option -f allows control of flags that impact run-time performance when opening the
B-Trees that store the hashes inside hash databases. Mutlple flags may be provided by
separating them with colon character “:”. Flags include:

• preload - read the existing file to preload O/S file cache.

• cache_branches - enable permanent cache of all branch nodes touched. Otherwise
make branch node available when use count becomes 0, just like leaf nodes.

• least_memory

11

http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf
http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf
https://github.com/jessek/hashdeep/releases/tag/release-4.4
https://github.com/jessek/hashdeep/releases/tag/release-4.4
https://github.com/simsong/hashdb/wiki/Installing-md5deep
https://github.com/simsong/hashdb/wiki/Installing-md5deep
http://www.forensicswiki.org/wiki/Fiwalk
https://github.com/sleuthkit/sleuthkit
http://digitalcorpora.org/downloads/hashdb/hashdb_quick_reference.pdf
http://digitalcorpora.org/downloads/hashdb/hashdb_quick_reference.pdf

Table 1: Options for General Usage

Option Verbose Option Specification
-q --quiet Requests quiet mode for

commands that print
progress status

-f --flags Flags controlling
mode: preload
cache_branches
least_memory
low_memory balanced
fast fastest

• low_memory

• balanced

• fast

• fastest

4.2 Creating a Hash Database

A hash database must be created before hashes can be added to it. The command to
create a hash database is shown in Table 2.

Table 2: Command for Creating Hash Databases

Command Usage Description
create create [-p <hash block size>]

[-m<maximum duplicates>]
[--bloom <state>] [--bloom_n <n>]
[--bloom_kM <k:M>] hashdb.hdb

Creates a new hash
database with the
given configuration
parameters.

Tables 3 and 4 show the optional parameters that can be used to specify database set-
tings.

Hash Block Size
This setting specifies the hash block size used to generate hashes. The hash block size
must be greater than or equal to the sector size of 512, and must be divisible by 512 in
order to be byte aligned, as discussed in subsection 2.1.

Maximum Duplicates
This setting specifies the maximum number of duplicates of a hash value that hashdb
may put into the database. A default value of 0 means unlimited, but this may be
unreasonable. For example if a block is repeated many times and is thus not interesting,
limit storing its duplicates using this setting.

Bloom
This setting controls whether the Bloom filter will be enabled or disabled.

12

Table 3: Settings for New Databases

Option Verbose Option Specification
-p --hash_block_size=hash_block_size Specifies the block size

(hash_block_size) in
bytes used to generate
the hashes that will be
stored in the database.
Default is 4096 bytes.

-m --max_duplicates=maximum Specifies the maximum
number of hash dupli-
cates allowed. 0 value
indicates there is no
limit. Default is 0.

Table 4: Bloom Filter Settings

Option Verbose Option Specification
-A --bloom=enabled |disabled Enables or disables the

Bloom filter.
-B --bloom_n=n Configures Bloom fil-

ter to work well for a
database of (n) hashes.

-C --bloom_kM=k :M Available for advanced
or experimental use.
Configures Bloom filter
with (k) hash functions
and (M) bits per hash.

Bloom_n
This setting controls the size of the Bloom filter by using the number of hashes expected
in the database as input.

Bloom_kM
This setting directly controls the number of hash functions and the number of bits per
hash to use in the Bloom filter and is only recommended for experimentation. We rec-
ommend using bloom_n instead.

Example
To create an (empty) hash database named mock_video.hdb, type the following com-
mand:

� hashdb create mock_video.hdb

The above command will create a database with all of the default hash database settings.
Most users will not need to change those settings. Our DFXML file was created with
a default block size of 4096 bytes. Users can specify either the option and value or the
verbose option value for each parameter along with the create command, as in:

13

� hashdb create --max_duplicates=20 mock_video.hdb
� hashdb create -m 20 mock_video.hdb

The above two commands produce identical results, creating the database mock_video.hdb
that will accept a maximum of 20 hash duplicates.

4.3 Importing and Exporting

Hash databases may be imported from and exported to files in DFXML format and
may be imported from text files containing tabbed hash data. A hash database must be
created first before it may be imported into. Commands to import and export hashes
are shown in Table 5.
Note that there are other ways to populate a database besides these listed here,

Table 5: Commands for Importing and Exporting between DFXML Files and Hash
Databases

Command Usage Description
import import [-r <repository name>]

<DFXML file> <hashdb>
Imports values from the
DFXML file into the
hash database. Com-
mand can optionally in-
clude a specific reposi-
tory name to use for the
set of hashes being im-
ported.

import_tab import_tab [-r <repository name>]
<DFXML file> <hashdb>

Imports values from the
tab-dileneated file into
the hash database. Op-
tions allow using a spe-
cific repository name
and defining an alter-
nate sector size for the
set of hashes being im-
ported.

export export <hashdb.hdb> <DFXML file.xml> Exports hash database
to the DFXML file

including using other hash databases (discussed in subsection 5.4), by using the
bulk_extractor hashdb scanner (discussed in subsection 5.3), and through the use of
the import capability provided by the hashdb library API (discussed in subsection 5.2).

The tab-delimited import file consists of hash lines separated by carriage returns, where
each line consists of a filename followed by a tab followed by the file hash followed by
a sector index that starts at 1. Comment lines are allowed by starting them with the #
character. An example tab-delimited file is shown in Listing 3.
Using the DFXML file created in the previous section, type the following command:

� hashdb import -r mock_video_repository mock_video.xml mock_video.hdb

14

Listing 3: Example content of a tab-delimited import file
tab -delimited import file
1 file1 3b6b477d391f73f67c1c01e2141dbb17
2 file1 89 a170b6b9a948d21d1d6ee1e7cdc467
3 file1 f58a09656658c6b41e244b4a6091592c

In the above command the option -r is used along with the repository name mock_video_repository
to indicate the repository source of the block hashes being imported into the database.
The repository name is used to keep track of the sources of hashes. Hash blocks con-
tained in one database often originate from many different sources and the fileme may be
the same. For example, if we add two separate but similar databases with partial overlap
to a database, this will result in some duplicate hashes from multiple sources with the
same filename. The repository name can be used with those duplicates to allow users to
track all hashes back to their original sources. By default, the repository name used is
the text repository_ with the filename of the file being imported from appended after it.

The import command in the above example imports the contents of mock_video.xml
into the database mock_video.hdb. hashdb prints the following to the command line to
indicate that the hashes have been inserted into the database successfully:
hashdb changes (insert):

hashes inserted: 2595

The database mock_video.hdb now holds 2595 hash values. If curious, you may navigate
into the directory mock_video.hdb to observe its set of database files. The following
lists the contents:
4097 Mar 9 21:52 Bloom_filter_1

90112 Mar 9 21:56 hash_store
3788 Mar 9 21:52 history.xml
3573 Mar 9 21:56 log.xml
3105 Mar 9 21:52 settings.xml

47 Mar 9 22:21 source_filename_store.dat
8192 Mar 9 21:56 source_filename_store.idx1
8192 Mar 9 21:56 source_filename_store.idx2

25 Mar 9 22:21 source_lookup_store.dat
8192 Mar 9 21:56 source_lookup_store.idx1
8192 Mar 9 21:56 source_lookup_store.idx2
8192 Mar 9 21:56 source_metadata_store

37 Mar 9 22:21 source_repository_name_store.dat
8192 Mar 9 21:56 source_repository_name_store.idx1
8192 Mar 9 21:56 source_repository_name_store.idx2

The file log.xml shows that a set of hash blocks have just been inserted. Listing 4
shows the excerpt of the log file that tracks this statistic. Users will prefer to run
statistical commands such as this to get information about the contents of the database
(and confirm that values were inserted):

� hashdb size mock_video.hdb

4.4 Database Manipulation

Databases may need to be merged together or common hash values may need to be
subtracted out in order for them to be more suitable for scanning against. Commands
that manipulate hash databases are outlined in Table 6. Destination databases are
created if they do not exist yet.

15

Listing 4: Excerpt of the log.xml indicating hash blocks were inserted
...

<repository_name >mock_video_repository </ repository_name >
<timestamp name=’begin import ’ delta = ’0.024016 ’ total = ’0.024016 ’/ >
<timestamp name=’end import ’ delta = ’0.015009 ’ total = ’0.039025 ’/ >
<hashdb_changes >

<hashes_inserted >2595 </ hashes_inserted >
</hashdb_changes >

...

4.4.1 Tracking Changes in Hash Databases

Statistics about hash database changes are reported on the console and to the log file
and history file inside the hash database. These statistics show the number of hashes
inserted or removed as a result of a command, and also show the number of hashes not
inserted or not removed because specific conditions were not met. These statistics are
shown in Table 7.

4.5 Scan Services

hashdb can be used to determine if a file, directory or disk image has content that
matches previously identified content. This capability can be used, for example, to de-
termine if a set of files contains a specific file excerpt or if a media image contains a video
fragment. Forensic investigators can use this feature to search for blacklisted content.
To scan media for hash values, run using the bulk_extractor hashdb scanner on a
media image file and provide a hash database created by hashdb as input. Scan services
are shown in Table 8.

First, identify the media that you would like to scan. For this example, we download
and use video file mock_video_redacted_image available at http://digitalcorpora.
org/downloads/hashdb/demo.

Second, identify the existing hash database that will be used to search for hash value
matches. We’ll use the database mock_video.hdb that we created in the previous sec-
tion. That database contains all of the block hash values from a media image.

Finally, run bulk_extractor from the command line and send the required parameters
to the hashdb scanner using the -S option. Run the following command:

� bulk_extractor -e hashdb -o outdir -S hashdb_mode=scan
-S hashdb_scan_path_or_socket=mock_video.hdb mock_video_redacted_image

This command tells bulk_extractor to enable the hashdb scanner and to run it in
“scan” mode to try to match the values found in the local database mock_video.hdb.
Note: other run options using bulk_extractor are discussed further in subsection 5.3.

Listing 5 shows the output printed to the command line as a result of the above
bulk_extractor hashdb scan command.

All hash block matches discovered in the hash database are printed to the bulk_extractor
output file identified_blocks.txt. Listing 6 shows the contents of that file after the

16

http://digitalcorpora.org/downloads/hashdb/demo
http://digitalcorpora.org/downloads/hashdb/demo

Table 6: Commands to Manipulate Hash Databases

Command Usage Description
add add <source db>

<destination db>
Copies all of the hashes
from source db to desti-
nation db

add_multiple add_multiple <source db1>
<source db2> <destination db>

Performs the union of
source db1 and source
db2 and copies all of
the hash values from the
union into destination
db

add_repository add_repository <source db1>
<destination db2>
<repository namedb>

Adds source db1 to des-
tination db2 but only
when the repository
name matches

intersect intersect <source db1>
<source db2> <destination db>

Copies hash values com-
mon to both source db1
and source db2 into
destination db where
sources match

intersect_hash intersect_hash <source db1>
<source db2> <destination db>

Copies hash values com-
mon to both source db1
and source db2 into des-
tination db even when
source repository name
and filename do not
match

subtract subtract <source db1>
<source db2> <destination db>

Copies hash values
found in source db1 but
not in source db2 into
destination db where
sources match

subtract_hash subtract <source db1>
<source db2> <destination db>

Copies hash values
found in source db1
but not in source db2
into destination db even
when source repository
name and filename do
not match

deduplicate deduplicate <source db>
<destination db>

Copies all non-duplicate
hash values from source
db into destination db

bulk_extractor run. Each line of the file corresponds to one hash block from the input
data provided that was matched in the database. The number at the beginning of the
line is the Forensic Path.

The second column of the identified_blocks.txt file shows the actual block hash

17

Table 7: Database Changes Resulting from Commands that Manipulate Hash
Databases

Statistic Meaning
hashes_inserted Number of hashes inserted.
hashes_not_inserted_
mismatched_hash_block_size

Number of hashes not inserted because the hash block
size of the block requested for insert was incorrect.
For example if the database requires a hash block
size of 4096, and the file size is 5096 bytes, the last
block hash size will be an (invalid) 100 bytes, so it
will not be inserted. NOTE: this will occur almost
every time hash blocks are added to the database
since the remaining bytes of every file are not likely
to be comprised of the exact hash size. This is not
an error.

hashes_not_inserted_
invalid_byte_alignment

Number of hashes not inserted because the file offset
was not byte aligned. If the database expects a byte
alignment of 512 and the hashdb user tries to add a
hash at byte 80, hashdb will detect that 80 does not
fall on a 512 byte boundary (80 mod 512 6= 0).

hashes_not_inserted_
exceeds_max_duplicates

Number of hashes not inserted because they exceed
the max duplicates value. For example, user sets max
duplicates with -m 20 and the run attempts to import
30 hashdigests calculated from 30 NULL blocks of
input, so we see 20 max duplicates.

hashes_not_inserted_
duplicate_element

Number of hashes not inserted because they are du-
plicate elements. The user attempts to import a hash
where the hash value, repository name, filename, and
its file offset are all the same.

hashes_removed Number of hashes removed.
hashes_not_removed_
mismatched_hash_block_size

Number of hashes not removed because the hash
block size of the block requested for removal did not
match the hash block size the database was config-
ured to accept.

hashes_not_removed_
invalid_byte_alignment

Number of hashes not removed because the file offset
was not byte aligned.

hashes_not_removed_
no_hash

Number of hashes not removed because the hash
blocks requested for removal did not exist in the
database.

hashes_not_removed_
no_element

Number of hashes not removed because the hashes,
specifically identified by hash value, repository name,
filename, and its file offset do not exist in the
database, indicating a possible mistake in database
management.

source_metadata_inserted Number of metadata items inserted.
source_metadata_inserted_
already_present

Number of metadata items not inserted because the
specified metadata is already present.

18

Table 8: Commands that Provide Scan Services

Command Usage Description
scan scan <path_or_socket>

<DFXML file>
Scans the hashdb for
hashes that match
hashes in the DFXML
file and prints out
matches

scan_hash scan_hash <path_or_socket>
<hash value>

Scans the hashdb for
the specified hash value
and prints out whether
it matches

scan_expanded scan_expanded [-m <number>]
<hashdb> <DFXML file>

Scans the hashdb for
hashes that match
hashes in the DFXML
file and unless more
than max, prints out
the repository name,
filename, and file offset
for each hash that
matches

scan_expanded_
hash

scan_expanded_hash
[-m <number>] <hashdb>
<hash value>

Scans the hashdb for the
specified hash value and
unless more than max,
prints out the repository
name, filename, and file
offset for each hash that
matches

server server <hashdb> <port number> Starts a scan service at
the given port number

value. The final column is the number of times this block hash value has been added
to the hash database. It is a count of hash duplicates. Hash duplicates occur when the
hash value is the same but any part of the source information including repository name,
filename or offset, is unique. In this case, each hash values shown has only been added
to the database once.

Users may be put off by the quantity of matches incurred by low-entropy data in their
databases such as blocks of zeros or metadata header blocks from files that are otherwise
unique. Database manipulation commands, subsection 4.4 , can mitigate this, for
example:

• Use the “subtract” command to remove known whitelist data created from sources
such as “brand new” operating system images and the NSRL.

• Alternatively, use the “deduplicate” command to copy all hash values that have
been imported exactly once.

These commands are provided to manage false positives.

19

Listing 5: Output from bulk_extractor hashdb scan
bulk_extractor version: 1.4.1
Input file: mock_video_redacted_image
Output directory: outdir1
Disk Size: 12596738
Threads: 4
All data are read; waiting for threads to finish ...
Time elapsed waiting for 1 thread to finish:

(timeout in 60 min .)
Time elapsed waiting for 1 thread to finish:

6 sec (timeout in 59 min 54 sec.)
Thread 0: Processing 0

All Threads Finished!
Producer time spent waiting: 0 sec.
Average consumer time spent waiting: 4.69167 sec.
Phase 2. Shutting down scanners
Phase 3. Creating Histograms

ccn histogram ... ccn_track2 histogram ... domain histogram ...
email histogram ... ether histogram ... find histogram ...
ip histogram ... telephone histogram ... url histogram ...
url microsoft -live ... url services ... url facebook -address ...
url facebook -id... url searches ...

Elapsed time: 6.33812 sec.
Total MB processed: 125
Overall performance: 1.98746 MBytes/sec (0.496864 MBytes/sec/thread)
Total email features found: 0

Listing 6: The identified_blocks.txt file produced by bulk_extractor’s hashdb
scanner. First column is the forensic path, second is the hash value, and third is the
number of times the hash value occurs in the database
BANNER FILE NOT PROVIDED (-b option)
BULK_EXTRACTOR -Version: 1.5.5-dev ($Rev: 10844 $)
Feature -Recorder: identified_blocks
Filename: /home/bdallen/demo8/demo_video_redacted_image
Feature -File -Version: 1.1
12452352 3b6b477d391f73f67c1c01e2141dbb17 {" count ":1}
12456448 89 a170b6b9a948d21d1d6ee1e7cdc467 {" count ":1}
12460544 f58a09656658c6b41e244b4a6091592c {" count ":1}
12464640 1d0abbddf1344ac751d17604bdd9ebe8 {" count ":1}
12468736 16 d75027533b0a5ab900089a244384a0 {" count ":1}
12472832 97068927 ff7ca0c4d27ac527474065bc {" count ":1}
12476928 80 a403ea48854676501a02e390a69699 {" count ":1}
12481024 7de953ea563c4df1f8369d8dd2cfb4d9 {" count ":1}
12485120 1b803bd6e014d1855e6f8413041c2b07 {" count ":1}
12489216 cf49adf3285b983d9f8d60497290bfd2 {" count ":1}
12493312 4cc415709e205ac0ef5b5dcfb77936b6 {" count ":1}
12497408 0c5c611edc8dfd34f85c6cbf88702e51 {" count ":1}
12501504 4a93e65fb187d71c2b8b5697f1460e3d {" count ":1}
12505600 a667f79e6446222092257af1780f6a9f {" count ":1}
12509696 aec94ab99f591f507b3c27424a0b52c5 {" count ":1}
12513792 c6361fe0eb4f7b13bac6529e1cdd8ea4 {" count ":1}

20

Listing 7: The identified_sources.txt file produced by post-processing the
identified_blocks.txt file. First column is the forensic path, second is the hash
value, and third is the repository name, filename, and file offset
12464640 1d0abbddf1344ac751d17604bdd9ebe8 {" count ":1," source
_id":1," repository_name ":" temp1","filename ":"/ home/bdallen/demo8/demo_vide
o.mp4","filesize ":10630146 ," hashdigest ":" a003483521c181d26e66dc09740e939d"
}

4.6 Statistics

Various statistics are available about a given hash database including the size of a
database, where its hashes were sourced from, a histogram of its hashes, and more.
Table 9 describes available statistics.

To identify the source information associated with the hash values found in identified_blocks.txt,
type the following command using the hash database and identified_blocks.txt file as
input (command should be run from the same directory in which you ran bulk_extractor):

� hashdb expand_identified_blocks mock_video.hdb outdir/identified_blocks.txt
> identified_sources.txt

The above command pipes the output directly into the file identified_sources.txt.
Each line of the file will provide the source information for one of the identified hash
blocks. An example line from this file is shown in Listing 7, which shows that the block
at Forensic path 12464640 matches the block 10498048 bytes into the mock_video.mp4
files in the hash database, indicating a positive match.

A table of more relevant hashes and source information may be generated using the
explain_identified_blocks command. To generate these tables for identified_blocks.txt,
type the following command using the hash database and identified_blocks.txt file as
input (command should be run from the same directory in which you ran bulk_extractor):

� hashdb explain_identified_blocks mock_video.hdb outdir/identified_blocks.txt
> explained_hashes_and_sources.txt

The above command pipes the output directly into the file explain_hashes_and_sources.txt.
The output of this command is shown in Listing 8. The first table in file explain_hashes_and_sources.txt
shows block hashes, their source ID, and the offset into the file where they were sourced
from. The second table in the file shows sources, in this case, just one source corre-
sponding to source ID 1. Each line of source information describes the repository name,
filename, file size, and file hash for a given source ID.

4.7 Tuning

Tuning commands are provided to improve performance or allow upgrade capability, see
Table 10. For Bloom filter settings, see Table 4.

4.8 Performance Analysis

Performance analysis commands for analyzing hashdb performance are available, see
Table 11.

21

Listing 8: The identified_hashes_and_sources.txt file produced by post-processing
the identified_blocks.txt file using the explain_identified_blocks command
hashdb -Version: 1.1.0
explain_identified_blocks -command -Version: 1
hashes
["0 c5c611edc8dfd34f85c6cbf88702e51 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10530816}]]
["16 d75027533b0a5ab900089a244384a0 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10502144}]]
["1 b803bd6e014d1855e6f8413041c2b07 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10518528}]]
["1 d0abbddf1344ac751d17604bdd9ebe8 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10498048}]]
["3 b6b477d391f73f67c1c01e2141dbb17 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10485760}]]
["4 a93e65fb187d71c2b8b5697f1460e3d ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10534912}]]
["4 cc415709e205ac0ef5b5dcfb77936b6 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10526720}]]
["7 de953ea563c4df1f8369d8dd2cfb4d9 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10514432}]]
["80 a403ea48854676501a02e390a69699 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10510336}]]
["89 a170b6b9a948d21d1d6ee1e7cdc467 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10489856}]]
["97068927 ff7ca0c4d27ac527474065bc ",{"count ":1} ,[{" source_id ":1," file_offs
et ":10506240}]]
[" a667f79e6446222092257af1780f6a9f ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10539008}]]
[" aec94ab99f591f507b3c27424a0b52c5 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10543104}]]
[" c6361fe0eb4f7b13bac6529e1cdd8ea4 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10547200}]]
[" cf49adf3285b983d9f8d60497290bfd2 ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10522624}]]
[" f58a09656658c6b41e244b4a6091592c ",{" count ":1} ,[{" source_id ":1," file_offs
et ":10493952}]]
sources
{" source_id ":1," repository_name ":" temp1","filename ":"/ home/bdallen/demo8/d
emo_video.mp4","filesize ":10630146 ," hashdigest ":" a003483521c181d26e66dc097
40e939d "}

22

Table 9: Commands that provide Statistics about Hash Databases

Command Usage Description
size size <hashdb> Prints out size infor-

mation relating to the
database

sources sources <hashdb> Provides a top-level
view of the repository
names and filenames
in the database. It
prints out all repos-
itories and files that
have contributed to this
database

histogram histogram <hashdb> Prints a hash distribu-
tion for the hashes in
the hashdb

duplicates duplicates <hashdb> <number> Prints out hashes in
the database that are
sourced the given num-
ber of times

hash_table hash_table <hashdb>
<source_id>

Prints out the hashes
and their offsets for the
specified source index

expand_identified
_blocks

expand_identified_blocks
<hashdb> [-m <number>]
<identified_blocks.txt>

Prints expanded source
information from the
hashdb unless more than
max, of each hash in the
identified_blocks.txt
input file

explain_identified
_blocks

expand_identified_blocks
[-m <number>] <hashdb>
<identified_blocks.txt>

Prints out hash and
source tables for sources
with hashes observed
no more than the maxi-
mum number of times,
default max 20, for
each hash feature in the
identified_blocks.txt
input file

4.9 Importing and Scanning Using the bulk_extractor hashdb Scan-
ner

The bulk_extractor hashdb scanner may be used to import hashes and to scan for
hashes. Example syntax for this scanner is shown in Table 12. Scanner options are
shown in Table 13.

23

Table 10: Commands that Tune Hash Databases

Command Usage Description
rebuild_bloom rebuild_bloom[--bloom <state>]

[--bloom_n <n>]
[--bloom_kM <k:M>]
<hashdb.hdb>

Rebuilds the Bloom fil-
ter using the provided
settings, see Table 4

upgrade upgrade <hashdb.hdb> Upgrades the hashdb
v1.0.0 database to be
compatible with hashdb
v1.1.1

Table 11: Commands that Support hashdb Performance Analysis

Command Usage Description
add_random add_random

-r [<repository name>]
<hashdb.hdb> <count>

Adds count random
hashes to the given
database, creating tim-
ing data in the log.xml
file

scan_random scan_random <hashdb.hdb> Scans the given
database, creating
timing data in the
log.xml file

Table 12: bulk_extractor hashdb Scanner Commands

Mode Example Description
import bulk_extractor -E hashdb

-S hashdb_mode=import
-o outdir1 my_image1

Import hashes from
image into out-
dir1/hashdb.hdb

scan bulk_extractor -E hashdb
-S hashdb_mode=scan
-S hashdb_scan_path_or_socket
=outdir1/hashdb.hdb -o outdir2
my_image

Scan image for hashes
matching hashes in out-
dir1/hashdb.hdb

24

Table 13: bulk_extractor hashdb Scanner Options

Option Default Specification
hashdb_mode none The mode for the scanner, one of

[none|import|scan]. For “none”, the
scanner is active but performs no ac-
tion. For “import”, the scanner imports
block hashes. For “scan”, the scanner
scans for matching block hashes.

hashdb_block_size 4096 Block size, in bytes, used to generate
hashes.

hashdb_ignore_empty_blocks YES Selects to ignore empty blocks, one of
[YES|NO].

hashdb_scan_path_or_socket The file path to a hash database or
socket to a hashdb server to scan
against. Valid only in scan mode. No
default provided. Value must be speci-
fied if in scan mode.

hashdb_scan_sector_size 512 Selects the scan sector size. Scans along
sector boundaries. Valid only in scan
mode.

hashdb_scan_max_features 0 The maximum number of feature lines
to record or 0 for no limit. Valid only
in scan mode.

hashdb_import_sector_size 4096 Selects the import sector size. Imports
along sector boundaries. Valid only in
import mode.

hashdb_import_repository_
name

default_
repository

Selects the repository name to attribute
the import to. Valid only in import
mode.

hashdb_import_max_
duplicates

0 The maximum number of duplicates to
import for a given hash value. Valid
only in import mode. Use default of 0
for no limit.

25

5 Use Cases for hashdb

There are many different ways to utilize the functionality provided by the hashdb tool.
In this section, we highlight some of the most common uses of the system.

5.1 Querying for Source or Database Information

Users can scan a hash database directly using various querying commands. Those com-
mands are outlined in Table 8. The “scan” command allows users to search for hash
blocks in a DFXML file that match hash blocks in a database. This can be used to
determine if content from raw media matches fragments of previously encountered data
contained in a database. For example, a forensic investigator may have a disk image in
evidence. Using that disk image and third party tool such as md5deep, the investiga-
tor can generate a DFXML file of sector block hashes. The investigator can then run
the “scan” command with the DFXML file to see if any content from the disk image
matches hash blocks of known fragments of previously encountered data. The “sources”
and “statistics,” commands provide information about the source of the hash blocks and
statistics about the database itself.

Each hash block stored in the database is stored with three separate pieces of source
information. This complete source information is provided for each source record in the
hash database, including hash duplicates. The “expand_identified_blocks” command
prints out this information for hashes identified in identified_blocks.txt feature files.
The source information includes:

• Repository Name: The repository name indicates the provenance of the dataset.
It is its description information, such as “Company X’s intellectual property files”.
The DFXML file generated by md5deep does not include a repository name.
To specify your own repository name when importing, use the -r <repository
name> option, specifically, import -r <repository name>. Otherwise, a default
repository name will be generated, consisting of the text repository_ followed by
the filename of the DFXML file, including its full path.

• Filename: The file from which the block hash was sourced. Typically, hash val-
ues are sourced from files or directories of file using md5deep with the recur-
sive directory “-r” option. If hash values are source from raw media using the
bulk_extractor hashdb scanner in import mode, then the Forensic Path is used
as the source information.

• File Offset: the offset, in bytes, into the file where the block hash was calculated.

5.1.1 Querying a Remote Hash Database

hashdb also provides the capability to set up a remote socket to “scan” an existing
database. Users can set up a database on the socket and then access the “scan” command
via that socket. To set up the scan service, users need to provide the name of the hash
database and the TCP socket that will be available for clients. For example, the following
command starts hashdb as a server service for the hash database at path my_hashdb.hdb
at socket endpoint tcp://*:14500:

� hashdb server my_hashdb.hdb tcp://*:14500

26

This example searches the hashdb server service available at socket tcp://localhost:14500
for hashes that match those in the DFXML file my_dfxml.xml:

� hashdb scan tcp://localhost:14500 my_dfxml.xml

The only socket service hashdb provides is for scanning. The hashdb “scan” command,
the hashdb library API constructor for scanning and the bulk_extractor hashdb scan-
ner in scan mode all accept a path or a socket and are the only place where sockets are
used.

A note of caution, when a socket server service is opened, its associated hash databased
is opened. Do not make changes to a database when it is opened as a socket server
service. Although this will not corrupt the hash database, it is likely to cause the server
service to perform incorrectly.

It is likely that the TCP port number you choose to use will need to be enabled by your
firewall on the Server side.

There is no security in the current protocol. It should only be used on a private network.

5.2 Writing Software that works with hashdb

hashdb provides an API that other software programs can use to access two important
database capabilities. The file hashdb.hpp found in the src directory contains the com-
plete specification of the API. That complete file is also contained in Appendix C of
this document. The two key features provided by the API include the ability to import
values into a hash database and the ability to scan media for any values matching those
in a given hash database. The bulk_extractor program uses the hashdb API to im-
plement both of these capabilities.

5.3 Scanning or Importing to a Database Using bulk_extractor

The bulk_extractor hashdb scanner allows users to query for fragments of previously
encountered hash values and populate a hash database with hash values. Options that
control the hashdb scanner are provided to bulk_extractor using the “-S name=value”
command line parameters. When bulk_extractor executes, the parameters are sent
directly to the scanner.

For example, the following command runs the bulk_extractor hashdb scanner in im-
port mode and adds hash values calculated from the disk image my_image to a hash
database:

� bulk_extractor -e hashdb -o outputDir -S hashdb_mode=import my_image

Note, bulk_extractor will place feature file and other output not relevant to the hashdb
application in the “outputDir” directory. When using the import command, the output
directory will contain a newly created hash database called hashdb.hdb. That database
can then be copied or added to a hash database in another location.

27

5.4 Updating Hash Databases

hashdb provides users with the ability to manipulate the contents of hash databases.
The specific command line options for performing these functions are described in
Table 6. hashdb databases are treated as sets with the add, subtract and intersect
commands basically using add, subtract and intersect set operations. For example,
the following command will copy all non-duplicate values from mock_video.hdb into
mock_video_dedup.hdb :

� hashdb deduplicate mock_video.hdb mock_video_dedup.hdb

Whenever a database is created or updated, hashdb updates the file log.xml, found in
the database’s directory with information about the actions performed.

After each command to change a database, statistics about the changes are writen in
the log.xml file and to stdout. Table 7 shows all of the statistics tracked in the log file
along with their meaning. The value of each statistic is the number of times the event
happened during the command. For example, if 280 hashes are removed, the statistic
“hashes_removed” will be marked with a value of 280.

5.4.1 Update Commands and “Duplicate” Hashes

Commands that add or import hashes of the same value will result in hash duplicates
if the source information is unique. If hash and source values are identical (including
repository name), no hash values are added with the add or import commands. The
intersect and subtract commands do not require source information to match. An
intersection occurs when hatches match, regardless of whether the source information
matches. Similarly, hash values are also subtracted from the database regardless of
whether or not their source information matches. The update statistics specified in the
log file (shown in 7) will specify the results of each of these commands to help users
track changes.

As discussed previously, users can only specify the repository name with the import
command. As databases become large, the repository name for each hash value will
help identify important source information. Users should plan on importing data with
specific repository names whenever possible to avoid source confusion later.

Finally, we provide two philosophies for mitigating duplicate hash bloat:

• If you know you have imported the same blacklist data twice, and you do not want
to manage a ’whitelist’ database, deduplicate is a quick and easy way to get rid
of low-entropy noise.

• If your database has blacklist data from more than one source or you just want
tighter control about what you want to remove and are willing to use a ’whitelist’
database to remove hashes to improve lookup speed or to reduce noise about
uninteresting hashes found, use subtract.

5.5 Optimizing a Hash Database

For large databases, it takes a bit of time to look up a hash value to determine whether
it is in the database. This time adds up when scanning for millions of hash values. As

28

an optimization, hashdb provides the capability to utilize a Bloom filter to speed up
performance during hash queries. A Bloom filter is a data structure that is used to
determine if a member is not part of a set. In hashdb, a Bloom filter can be used to
quickly indicate if a hash value is not part of the database. If the Bloom filter indicates
a hash value is definitely not in the hash database, no actual hash database look up is
necessary. If the Bloom filter says the hash value may be in the database, a look up is
still required and no time is saved. The disadvantage of using a Bloom filter is that it can
consume large amounts of disk space and memory. A Bloom filter that is too small fills
up and then too often gives false positives that indicate the hash value might be in the
database. A Bloom filter that is too large will take up too much memory and disk space.

hashdb has a Bloom filter. Users can enable or disable this Bloom filter and tune it
using information about the hashes and hash functions. The optimal configuration for
the Bloom filter depends on the size of the dataset. Although several tuning controls
are available, we recommend only using “bloom1_n <n>,” where “n” is the expected
number of hashes in the dataset. If users want to improve scan speed, they should tune
Bloom 1 based on their database size using this option. The default setting for the
Bloom filter in hashdb is enabled, is tuned for about 45,000,000 hashes, and takes up
about 33MB of space.

5.6 Exporting Hash Databases

Users can export hashes from a hash database to a DFXML file using the “export” com-
mand. For example, the following command will export the mock_video.hdb database
to the file demoVideoHashes.xml:

� hashdb export mock_video.hdb demoVideoHashes.xml

Note that the DFXML that hashdb exports is compatible but different from the DFXML
created by md5deep. Listing 9 shows an example excerpt of a DFXML file exported from
hashdb. The differences are:

1. The first offset is 6938624, not 0, because the output is sorted by hash value.

2. There is a fileobject tag wrapping every individual hash.

3. Every entry includes a repository_name tag.

29

Listing 9: Excerpt of a DFXML exported by hashdb
<fileobject >

<repository_name >mock_video_repository </ repository_name >
<filename >/home/bdallen/demo/mock_video.mp4 </filename >
<byte_run file_offset = ’6938624 ’ len=’4096’>

<hashdigest type=’MD5 ’>0016 aa775765eb7929ec06dea25b6f0e </ hashdigest >
</byte_run >

</fileobject >
<fileobject >

<repository_name >mock_video_repository </ repository_name >
<filename >/home/bdallen/demo/mock_video.mp4 </filename >
<byte_run file_offset = ’3837952 ’ len=’4096’>

<hashdigest type=’MD5 ’ >00183 a37c80b3ee02cb4bdd3e7d7e9d2 </ hashdigest >
</byte_run >

</fileobject >\
<fileobject >

<repository_name >mock_video_repository </ repository_name >
<filename >/home/bdallen/demo/mock_video.mp4 </filename >
<byte_run file_offset = ’5652480 ’ len=’4096’>

<hashdigest type=’MD5 ’ >00513 c9484ebc957eb928adf30504bc9 </ hashdigest >
</byte_run >

</fileobject >

6 Worked Example: Finding Similarity Between Disk Im-
ages

The worked example provided is intended to further illustrate how to use hashdb to
answer specific questions and perform specific tasks. This example uses a publicly avail-
able dataset and can be replicated by readers of this manual. In this example, we walk
through the process of using hashdb (and bulk_extractor) to find the similarities be-
tween two separate disk images. We generate a hash database of block hashes from each
media image and then obtain common block hashes by taking the intersection of the
two databases.

First, we download two files to use for comparison. The disk images are called jo-favorites
-usb-2009-12-11.E01 and jo-work-usb-2009-12-11.E01. Both files are available at
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/.
Specifically with this example, we will be comparing the contents of two fictional USB
drives.

Then, we run bulk_extractor on each disk image separately:

� bulk_extractor -o workOutput -S hashdb_mode=import jo-work-usb-2009-12-11.E01

bulk_extractor writes the following output to the screen, indicating a successful run:
bulk_extractor version: 1.4.1
Input file: jo-work-usb-2009-12-11.E01
Output directory: workOutput
Disk Size: 131072000
Threads: 1
21:57:21 Offset 67MB (51.20%) Done in 0:00:24 at 21:57:45
All data are read; waiting for threads to finish...
Time elapsed waiting for 1 thread to finish:

1 sec (timeout in 59 min 59 sec.)

30

http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/

All Threads Finished!
Producer time spent waiting: 38.5587 sec.
Average consumer time spent waiting: 1.85768 sec.

** bulk_extractor is probably CPU bound. **
** Run on a computer with more cores **
** to get better performance. **

Phase 2. Shutting down scanners
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...
ip histogram... telephone histogram... url histogram...
url microsoft-live... url services... url facebook-address...
url facebook-id... url searches...

Elapsed time: 47.6743 sec.
Total MB processed: 1310
Overall performance: 2.74932 MBytes/sec (2.74932 MBytes/sec/thread)
Total email features found: 31

Next, run bulk_extractor on the other usb drive disk image:

� bulk_extractor -o favoritesOutput -S hashdb_mode=import jo-favorites-usb-2009-11.E01

bulk_extractor runs, printing the following to the screen:
bulk_extractor version: 1.4.1
Input file: jo-favorites-usb-2009-12-11.E01
Output directory: favoritesOutput
Disk Size: 1048576000
Threads: 1
21:59:44 Offset 67MB (6.40%) Done in 0:05:07 at 22:04:51
22:00:08 Offset 150MB (14.40%) Done in 0:04:30 at 22:04:38
22:00:32 Offset 234MB (22.40%) Done in 0:03:59 at 22:04:31
22:00:40 Offset 318MB (30.40%) Done in 0:02:55 at 22:03:35
22:00:41 Offset 402MB (38.40%) Done in 0:02:05 at 22:02:46
22:00:42 Offset 486MB (46.40%) Done in 0:01:31 at 22:02:13
22:00:44 Offset 570MB (54.40%) Done in 0:01:07 at 22:01:51
22:00:45 Offset 654MB (62.40%) Done in 0:00:49 at 22:01:34
22:00:47 Offset 738MB (70.40%) Done in 0:00:35 at 22:01:22
22:00:48 Offset 822MB (78.40%) Done in 0:00:23 at 22:01:11
22:00:50 Offset 905MB (86.40%) Done in 0:00:13 at 22:01:03
22:00:51 Offset 989MB (94.40%) Done in 0:00:05 at 22:00:56
All data are read; waiting for threads to finish...
Time elapsed waiting for 1 thread to finish:

(timeout in 60 min .)
All Threads Finished!
Producer time spent waiting: 76.8042 sec.
Average consumer time spent waiting: 1.79526 sec.

** bulk_extractor is probably CPU bound. **
** Run on a computer with more cores **
** to get better performance. **

Phase 2. Shutting down scanners
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...
ip histogram... telephone histogram... url histogram...
url microsoft-live... url services... url facebook-address...
url facebook-id... url searches...

Elapsed time: 89.1399 sec.

31

Total MB processed: 10485
Overall performance: 11.7633 MBytes/sec (11.7633 MBytes/sec/thread)
Total email features found: 2

After bulk_extractor runs, two output directories are created. Each directory contains
a hash database called hashdb.hdb. The hash databases each contain cryptographic block
hashes produced from the disk images. Next we create database intersection.hdb with
values that are common between the two databases using the following command:

� hashdb intersect workOutput/hashdb.hdb favoritesOutput/hashdb.hdb intersection.hdb

hashdb prints the following indicating that 32 hashes were inserted successfully and 8
hashes were not inserted because they were considered to be duplicate elements (same
hash and same source information):
hashdb changes (insert):

hashes inserted=32
hashes not inserted, duplicate element=8

Now, the database intersection.hdb contains hashes common to both disk images.

Here are some ways to gain knowledge from the common hashes identified:

• Constrain the matches further by using the intersect command to intersect the
database with a blacklist database, and then use the get_sources command to
find the blacklist filenames that these hash values correspond to.

• Use bulk_extractor Viewer to navigate to the data that these hashes were
generated from to see if the raw data there is significant.

• If the scanned image contains a file system, try to use the fiwalk tool to carve the
files from which the hash values were calculated.

7 Troubleshooting

All hashdb users should join the bulk_extractor users Google group for more informa-
tion and help with any issues encountered. To join, send an email to bulk_extractor-
users+subscribe@ googlegroups.com.

8 Related Reading

There are other articles related to block hashing, and its practical and research applica-
tions. Some of those articles are specifically cited throughout this manual. Other useful
references include but are not limited to:

• Garfinkel, Simson, Alex Nelson, Douglas White and Vassil Rousseve. Using purpose-
built functions and block hashes to enable small block and sub-file forensics. Digi-
tal Investigation. Volume 7. 2010. Page S13–S23. http://www.dfrws.org/2010/
proceedings/2010-302.pdf.

• Foster, Kristina. Using Distinct Sectors in Media Sampling and Full Media Anal-
ysis to Detect Presence of Documents From a Corpus. Naval Postgraduate School
Masters Thesis, September 2012. http://calhoun.nps.edu/public/handle/10945/
17365.

32

http://www.dfrws.org/2010/proceedings/2010-302.pdf
http://www.dfrws.org/2010/proceedings/2010-302.pdf
http://calhoun.nps.edu/public/handle/10945/17365
http://calhoun.nps.edu/public/handle/10945/17365

References

[1] Bradley, J., and Garfinkel, S. bulk_extractor users guide, September 2013.
http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf.

[2] Garfinkel, S. Digital forensics XML and the DFXML toolset. Digital Investigation
8 (February 2012), 161–174. http://www.sciencedirect.com/science/article/
pii/S1742287611000910.

[3] Young, J., Foster, K., Garfinkel, S., and Fairbanks, K. Distinct sec-
tor hashes for target file detection. IEEE Computer (December 2012). http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6311397.

33

http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf
http://www.sciencedirect.com/science/article/pii/S1742287611000910
http://www.sciencedirect.com/science/article/pii/S1742287611000910
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6311397
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6311397

Appendices

A hashdb Quick Reference

General Usage
hashdb <command> <options> <args> Run hashdb command, -q for quiet mode, -f <flags>

to control B-Tree flags

New Database
create [-p <hash block size>] [-m <maximum duplicates>]

[<bloom settings>] <hashdb.hdb>
Create a new hash database

Import/Export
import [-r <repository name>] <hashdb.hdb> <dfxml.xml> Import from DFXML file into hash database
import_tab [-r <repository name>] [-s <sector size>]

<hashdb.hdb> <dfxml.xml>
Import from tab file into hash database

export <hashdb.hdb> <dfxml.xml> Export hash database to DFXML file

Database Manipulation
add <A.hdb> <B.hdb> A+B → B Add A into B
add_multiple <A.hdb> <B.hdb> <C.hdb> A+B → C add A and B into C
add_repository <A.hdb> <B.hdb> <repository name> A+B → B Add A into B but only when the repository

name matches
intersect <A.hdb> <B.hdb> <C.hdb> A ∩B → C add intersection of A and B into C
intersect_hash <A.hdb> <B.hdb> <C.hdb> A ∩B → C intersect into C when hashes match
subtract <A.hdb> <B.hdb> <C.hdb> A−B → C add A but not B into C
subtract_hash <A.hdb> <B.hdb> <C.hdb> A−B → C add A but not hashes in B into C
deduplicate <A.hdb> <B.hdb> Copy A→ B except for hashes with duplicates

Scan Services
scan <path or socket> <dfxml.xml> Scan DFXML file for matching hashes
scan_hash <path or socket> <hash value> Scan for hash match
scan_expanded [-m <number>] <hashdb.hdb> <dfxml.xml> Scan DFXML file for matches showing all sources
scan_expanded_hash [-m <number>] <hashdb.hdb> <hash
value>

Scan for hash match showing all sources

server <hashdb.hdb> <port number> Start scan service at port

Statistics
size <hashdb.hdb> Print sizes of internal database tables
sources <hashdb.hdb> Print source metadata
histogram <hashdb.hdb> Print hash distribution
duplicates <hashdb.hdb> <number> Print hashes sourced the given number of times
hash_table <hashdb.hdb> <source_id> Print the hashes associated with this source index
expand_identified_blocks [-m <number>] <hashdb.hdb>

<identified_blocks.txt>
Expand to include source information for each source

explain_identified_blocks [-m <number>] <hashdb.hdb>
<identified_blocks.txt>

Print information about less frequently observed
hashes

Tuning
rebuild_bloom [<bloom settings>] <hashdb.hdb> Rebuild Bloom filter
upgrade <hashdb.hdb> Make database from v1.0.0 compatible with v1.1.0

Performance Analysis
add_random [-r <repository name>] <hashdb.hdb> <count> Add random hashes, log performance in log.xml
scan_random <hashdb.hdb> Scan random hashes, log performance in log.xml

bulk_extractor Scanner
bulk_extractor -E hashdb -S hashdb_mode=import -o outdir1 -R my_import_dir Import directory
bulk_extractor -E hashdb -S hashdb_mode=scan -S hashdb_scan_path_or_socket=

outdir1/hashdb.hdb -o outdir2 my_image2
Scan image

34

B Output of hashdb Help Command
hashdb Version 1.1.2
Usage: hashdb [-h|-H|--help|--Help] [-v|-V|--version] [-q|--quiet]

[-f|--flags=<flags>] <command> [<args>]

-h, --help print this message
-H, --Help print this message plus usage notes and examples
-v, -V, --version, --Version print version number
-q, --quiet quiet mode
-f, --flags=flags set B-Tree flags, any of: preload:cache_branches:

least_memory:low_memoy:balanced:fast:fastest

hashdb supports the following commands:

New database:
create [options] <hashdb>

Create a new <hashdb> hash database.

Options:
-p, --hash_block_size=<hash block size>

<hash block size>, in bytes, of hashes(default 4096)
expected <hash block size>, in bytes, or 0 for no restriction
(default 4096)

-m, --max=<maximum>
<maximum> number of hash duplicates allowed, or 0 for no limit
(default 0)

--bloom <state>
sets bloom filter <state> to enabled | disabled (default enabled)

--bloom_n <n>
expected total number <n> of distinct hashes (default 45634027)

--bloom_kM <k:M>
number of hash functions <k> and bits per hash <M> (default <k>=3
and <M>=28 or <M>=value calculated from value in --bloom_n)

Parameters:
<hashdb> the file path to the new hash database to create

Import/Export:
import [-r <repository name>] <hashdb> <DFXML file>

Import hashes from file <DFXML file> into hash database <hashdb>.

Options:
-r, --repository=<repository name>

The repository name to use for the set of hashes being imported.
(default is "repository_" followed by the <DFXML file> path).

Parameters:
<hashdb> the hash database to insert the imported hashes into
<DFXML file> the DFXML file to import hashes from

import_tab [-r <repository name>] [-s <sector size>] <hashdb> <tab file>
Import hashes from file <tab file> into hash database <hashdb>.

Options:
-r, --repository=<repository name>

The repository name to use for the set of hashes being imported.
(default is "repository_" followed by the <NIST file> path).

-s, --sector_size=<sector size>
The sector size associated with the hashes being imported.
(default 512)

35

Parameters:
<hashdb> the hash database to insert the imported hashes into
<NIST file> the NIST file to import hashes from

export <hashdb> <DFXML file>
Export hashes from the <hashdb> to a <DFXML file>.

Parameters:
<hashdb> the hash database containing hash values to be exported
<DFXML file> the new DFXML file to export hash values into

Database manipulation:
add <source hashdb> <destination hashdb>

Copy hashes from the <source hashdb> to the <destination hashdb>.

Parameters:
<source hashdb> the source hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into

add_multiple <source hashdb 1> <source hashdb 2> <destination hashdb>
Perform a union add of <source hashdb 1> and <source hashdb 2>
into the <destination hashdb>.

Parameters:
<source hashdb 1> a hash database to copy hashes from
<source hashdb 2> a second hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into

add_repository <source hashdb> <destination hashdb> <repository name>
Copy hashes from the <source hashdb> to the <destination hashdb>
when the <repository name> matches.

Parameters:
<source hashdb> the source hash database to copy hashes from
<destination hashdb> the destination hash database to copy hashes into
<repository name> the repository name to match when adding hashes

intersect <source hashdb 1> <source hashdb 2> <destination hashdb>
Copy hashes that are common to both <source hashdb 1> and
<source hashdb 2> into <destination hashdb>. Hashes and their sources
must match.

Parameters:
<source hashdb 1> a hash databases to copy the intersection of
<source hashdb 2> a second hash databases to copy the intersection of
<destination hashdb> the destination hash database to copy the

intersection of exact matches into

intersect_hash <source hashdb 1> <source hashdb 2> <destination hashdb>
Copy hashes that are common to both <source hashdb 1> and
<source hashdb 2> into <destination hashdb>. Hashes match when hash
values match, even if their associated source repository name and
filename do not match.

Parameters:
<source hashdb 1> a hash databases to copy the intersection of
<source hashdb 2> a second hash databases to copy the intersection of
<destination hashdb> the destination hash database to copy the

intersection of hashes into

36

subtract <source hashdb 1> <source hashdb 2> <destination hashdb>
Copy hashes that are in <souce hashdb 1> and not in <source hashdb 2>
into <destination hashdb>. Hashes and their sources must match.

Parameters:
<source hashdb 1> the hash database containing hash values to be

added if they are not also in the other database
<source hashdb 2> the hash database containing the hash values that

will not be added
<destination hashdb> the hash database to add the difference of the

exact matches into

subtract_hash <source hashdb 1> <source hashdb 2> <destination hashdb>
Copy hashes that are in <souce hashdb 1> and not in <source hashdb 2>
into <destination hashdb>. Hashes match when hash values match, even if
their associated source repository name and filename do not match.

Parameters:
<source hashdb 1> the hash database containing hash values to be

added if they are not also in the other database
<source hashdb 2> the hash database containing the hash values that

will not be added
<destination hashdb> the hash database to add the difference of the

hashes into

deduplicate <source hashdb> <destination hashdb>
Copy hashes in <source hashdb> into <destination hashdb> except
for hashes defined multiple times.

Parameters:
<source hashdb> the hash database to copy hashes from when source

hashes appear only once
<destination hashdb> the hash database to copy hashes to when source

hashes appear only once

Scan services:
scan <path_or_socket> <DFXML file>

Scan the <path_or_socket> for hashes that match hashes in the
<DFXML file> and print out matches.

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<DFXML file> the DFXML file containing hashes to scan for

scan_hash <path_or_socket> <hash value>
Scan the <path_or_socket> for the specified <hash value> and print
out matches.

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<hash value> the hash value to scan for

scan_expanded [-m <number>] <hashdb> <DFXML file>
Scan the <hashdb> for hashes that match hashes in the <DFXML file>
and print out matches showing all sources. Source information is
suppressed if the number of sources exceeds the requested maximum.

Options:
-m <number> <maximum> number of sources a hash can have before

37

suppressing printing them (default 200).

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<DFXML file> the DFXML file containing hashes to scan for

scan_expanded_hash [-m <number>] <hashdb> <hash value>
Scan the <hashdb> for the specified <hash value> and print out matches
showing all sources. Source information is suppressed if the number
of sources exceeds the requested maximum.

Options:
-m <number> <maximum> number of sources a hash can have before

suppressing printing them (default 200).

Parameters:
<hashdb> the file path to the hash database to use as the

lookup source
<hash value> the hash value to scan for

server <hashdb> <port number>
Start a query server service for <hashdb> at <port number> for servicing
hashdb queries.

Parameters:
<hashdb> the hash database that the server service will use
<port number> the TCP port to make available for clients, for

example ’14500’

Statistics:
size <hashdb>

Print out size information for the given <hashdb> database.

Parameters:
<hashdb> the hash database to print size information for

sources <hashdb>
Print source information indicating where the hashes in the <hashdb>
came from.

Parameters:
<hashdb> the hash database to print all the repository name,

filename source information for

histogram <hashdb>
Print the histogram of hashes for the given <hashdb> database.

Parameters:
<hashdb> the hash database to print the histogram of hashes for

duplicates <hashdb> <number>
Print the hashes in the given <hashdb> database that are sourced the
given <number> of times.

Parameters:
<hashdb> the hash database to print duplicate hashes about
<number> the requested number of duplicate hashes

hash_table <hashdb> <source_id>
Print hash information from the given <hashdb> database for hashes

38

associated with the <source_id> source index.

Parameters:
<hashdb> the hash database to print hashes from
<source_id> the source index of the hashes to print

expand_identified_blocks [-m <number> <hashdb> <identified blocks file>
Print source information for each hash in <identified blocks file> by
referencing source information in <hashdb>. Source information is
suppressed if the number of sources exceeds the requested maximum.

Options:
-m <number> <maximum> number of sources a hash can have before

suppressing printing them (default 200).

Parameters:
<hashdb> the hash database to use as the lookup source

associated with the identified blocks file
<identified_blocks.txt> the identified blocks feature file generated

by bulk_extractor

explain_identified_blocks [-m <number>] <hashdb> <identified_blocks.txt>
Print source information from the <hashdb> database for hashes in the
<identified_blocks.txt> file for sources containing hashes that are not
repeated more than a maximum number of times.

Options:
-m <number> <maximum> number of repeats allowed before

a hash is dropped (default 20).

Parameters:
<hashdb> the hash database to use as the lookup source

associated with the identified blocks file
<identified_blocks.txt> the identified blocks feature file generated

by bulk_extractor

Tuning:
rebuild_bloom [options] <hashdb>

Rebuild the bloom filter in the <hashdb> hash database.

Options:
--bloom <state>

sets bloom filter <state> to enabled | disabled (default enabled)
--bloom_n <n>

expected total number <n> of distinct hashes (default 45634027)
--bloom_kM <k:M>

number of hash functions <k> and bits per hash <M> (default <k>=3
and <M>=28 or <M>=value calculated from value in --bloom_n)

Parameters:
<hashdb> the hash database for which the bloom filters will be

rebuilt

upgrade <hashdb>
Make <hashdb> created by v1.0.0 compatible with hashdb v1.1.0+.

Parameters:
<hashdb> the hash database to upgrade

Performance analysis:
add_random [-r <repository name>] <hashdb> <count>

39

Add <count> randomly generated hashes into hash database <hashdb>.
Write performance data in the database’s log.xml file.

Options:
-r, --repository=<repository name>

The repository name to use for the set of hashes being added.
(default is "repository_add_random").

Parameters:
<hashdb> the hash database to add randomly generated hashes into
<count> the number of randomly generated hashes to add

scan_random <hashdb>
Scan for random hashes in the <hashdb> database. Writes performance
in the database’s log.xml file.

Parameters:
<hashdb> the hash database to scan

bulk_extractor hashdb scanner:
bulk_extractor -e hashdb -S hashdb_mode=import -o outdir1 my_image1

Imports hashes from my_image1 to outdir1/hashdb.hdb

bulk_extractor -e hashdb -S hashdb_mode=scan
-S hashdb_scan_path_or_socket=outdir1/hashdb.hdb
-o outdir2 my_image2

Scans hashes from my_image2 against hashes in outdir1/hashdb.hdb

Examples:
This example uses the md5deep tool to generate cryptographic hashes from
hash blocks in a file, and is suitable for importing into a hash database
using the hashdb "import" command. Specifically:
"-p 4096" sets the hash block partition size to 4096 bytes.
"-d" instructs the md5deep tool to produce output in DFXML format.
"my_file" specifies the file that cryptographic hashes will be
generated for.
The output of md5deep is directed to file "my_dfxml_file.xml".

md5deep -p 4096 -d my_file > my_dfxml_file.xml

This example uses the md5deep tool to generate hashes recursively under
subdirectories, and is suitable for importing into a hash database using
the hashdb "import" command. Specifically:
"-p 4096" sets the hash block partition size to 4096 bytes.
"-d" instructs the md5deep tool to produce output in DFXML format.
"-r mydir" specifies that hashes will be generated recursively under
directory mydir.
The output of md5deep is directed to file "my_dfxml_file.xml".

md5deep -p 4096 -d -r my_dir > my_dfxml_file.xml

This example creates a new hash database named my_hashdb.hdb with default
settings:

hashdb create my_hashdb.hdb

This example imports hashes into hash database my_hashdb.hdb from DFXML input
file my_dfxml_file.xml, categorizing the hashes as sourced from repository
"my repository":

hashdb import -r "my repository" my_hashdb.hdb my_dfxml_file.xml

This example exports hashes in my_hashdb.hdb to output DFXML file my_dfxml.xml:
hashdb export my_hashdb my_dfxml.xml

40

This example adds hashes from hash database my_hashdb1.hdb to hash database
my_hashdb2.hdb:

hashdb add my_hashdb1.hdb my_hashdb2.hdb

This example performs a database merge by adding my_hashdb1.hdb and my_hashdb2.hdb
into new hash database my_hashdb3.hdb:

hashdb create my_hashdb3.hdb
hashdb add_multiple my_hashdb1.hdb my_hashdb2.hdb my_hashdb3.hdb

This example removes hashes in my_hashdb1.hdb from my_hashdb2.hdb:
hashdb subtract my_hashdb1.hdb my_hashdb2.hdb

This example creates a database without duplicates by copying all hashes
that appear only once in my_hashdb1.hdb into new database my_hashdb2.hdb:

hashdb create my_hashdb2.hdb
hashdb deduplicate my_hashdb1.hdb my_hashdb2.hdb

This example rebuilds the Bloom filters for hash database my_hashdb.hdb to
optimize it to work well with 50,000,000 different hash values:

hashdb rebuild_bloom --bloom_n 50000000 my_hashdb.hdb

This example starts hashdb as a server service for the hash database at
path my_hashdb.hdb at port number "14500":

hashdb server my_hashdb.hdb 14500

This example searches the hashdb server service available at socket
tcp://localhost:14500 for hashes that match those in DFXML file my_dfxml.xml
and directs output to stdout:

hashdb scan tcp://localhost:14500 my_dfxml.xml

This example searches my_hashdb.hdb for hashes that match those in DFXML file
my_dfxml.xml and directs output to stdout:

hashdb scan my_hashdb.hdb my_dfxml.xml

This example searches my_hashdb.hdb for hashes that match MD5 hash value
d2d95... and directs output to stdout:

hashdb scan_hash my_hashdb.hdb d2d958b44c481cc41b0121b3b4afae85

This example prints out source metadata of where all hashes in my_hashdb.hdb
came from:

hashdb sources my_hashdb.hdb

This example prints out size information about the hash database at file
path my_hashdb.hdb:

hashdb size my_hashdb.hdb

This example prints out statistics about the hash database at file path
my_hashdb.hdb:

hashdb statistics my_hashdb.hdb

This example prints out duplicate hashes in my_hashdb.hdb that have been
sourced 20 times:

hashdb duplicates my_hashdb.hdb 20

This example prints out the table of hashes along with source information
for hashes associated with source index 1 in my_hashdb.hdb:

hashdb hash_table my_hashdb.hdb 1

This example uses bulk_extractor to scan for hash values in media image
my_image that match hashes in hash database my_hashdb.hdb, creating output in
feature file my_scan/identified_blocks.txt:

41

bulk_extractor -e hashdb -S hashdb_mode=scan
-S hashdb_scan_path_or_socket=my_hashdb.hdb -o my_scan my_image

This example uses bulk_extractor to scan for hash values in the media image
available at socket tcp://localhost:14500, creating output in feature
file my_scan/identified_blocks.txt:

bulk_extractor -e hashdb -S hashdb_mode=scan
-S hashdb_scan_path_or_socket=tcp://localhost:14500 -o my_scan my_image

This example uses bulk_extractor to import hash values from media image
my_image into hash database my_scan/hashdb.hdb:

bulk_extractor -e hashdb -S hashdb_mode=import -o my_scan my_image

This example creates new hash database my_hashdb.hdb using various tuning
parameters. Specifically:
"-p 512" specifies that the hash database will contain hashes for data
hashed with a hash block size of 512 bytes.
"-m 2" specifies that when there are duplicate hashes, only the first
two hashes of a duplicate hash value will be copied.
"--bloom enabled" specifies that the Bloom filter is enabled.
"--bloom_n 50000000" specifies that the Bloom filter should be sized to expect
50,000,000 different hash values.

hashdb create -p 512 -m 2 --bloom enabled --bloom_n 50000000
my_hashdb.hdb

Using the md5deep tool to generate hash data:
hashdb imports hashes from DFXML files that contain cryptographic
hashes of hash blocks. These files can be generated using the md5deep tool
or by exporting a hash database using the hashdb "export" command.
When using the md5deep tool to generate hash data, the "-p <partition size>"
option must be set to the desired hash block size. This value must match
the hash block size that hashdb expects or else no hashes will be
copied in. The md5deep tool also requires the "-d" option in order to
instruct md5deep to generate output in DFXML format. Please see the md5deep
man page.

Using the bulk_extractor hashdb scanner:
The bulk_extractor hashdb scanner provides two capabilities: 1) scanning
a hash database for previously encountered hash values, and 2) importing
block hashes into a new hash database. Options that control the hashdb
scanner are provided to bulk_extractor using "-S name=value" parameters
when bulk_extractor is invoked. Please type "bulk_extractor -h" for
information on usage of the hashdb scanner. Note that the hashdb scanner
is not available unless bulk_extractor has been compiled with hashdb support.

Please see the hashdb Users Manual for further information.

C hashdb API: hashdb.hpp

// Author : Bruce Al l en <bdal len@nps . edu>
// Created : 2/25/2013
//
// The so f tware prov ided here i s r e l e a s e d by the Naval Postgraduate
// School , an agency o f the U. S . Department o f Navy . The so f tware
// bears no warranty , e i t h e r expres sed or imp l i ed . NPS does not assume
// l e g a l l i a b i l i t y nor r e s p o n s i b i l i t y f o r a User ’ s use o f the so f tware
// or the r e s u l t s o f such use .
//
// Please note t ha t w i th in the United Sta tes , c opy r i g h t p ro t ec t i on ,

42

// under Sec t ion 105 o f the United S t a t e s Code , T i t l e 17 , i s not
// a v a i l a b l e f o r any work o f the United S t a t e s Government and/or f o r
// any works crea t ed by United S t a t e s Government employees . User
// acknowledges t ha t t h i s so f tware conta ins work which was crea t ed by
// NPS government employees and i s t h e r e f o r e in the p u b l i c domain and
// not s u b j e c t to copy r i g h t .
//
// Released in t o the pu b l i c domain on February 25 , 2013 by Bruce Al l en .

/∗∗
∗ \ f i l e
∗ Header f i l e f o r the hashdb l i b r a r y .
∗/

#ifndef HASHDB_HPP
#define HASHDB_HPP

#include <st r i ng>
#include <vector>
#include <s td i n t . h>

#ifde f HAVE_PTHREAD
#include <pthread . h>
#endif

/∗∗
∗ Version o f the hashdb l i b r a r y .
∗/

extern "C"
const char∗ hashdb_version () ;

// requ i r ed i n s i d e hashdb_t__
class hashdb_manager_t ;
class logger_t ;
class tcp_client_manager_t ;

/∗∗
∗ The hashdb l i b r a r y .
∗
∗ Note : l i b h a s hd b must be compi led to suppor t the same hash type
∗ as the hash type prov ided in the temp la te .
∗/

template<typename T>
class hashdb_t__ {

private :
enum hashdb_modes_t {HASHDB_NONE,

HASHDB_IMPORT,
HASHDB_SCAN,
HASHDB_SCAN_SOCKET,
HASHDB_SCAN_PTHREAD,
HASHDB_SCAN_SOCKET_PTHREAD} ;

std : : s t r i n g path_or_socket ;
uint32_t b lock_s ize ;
uint32_t max_duplicates ;
hashdb_modes_t mode ;
hashdb_manager_t∗ hashdb_manager ; // import or scan path
tcp_client_manager_t∗ tcp_client_manager ; // scan sock e t

// s t d : : vec tor<hashdb_manager_t∗> pthread_hashdb_managers ; //
pthread

// s t d : : vec tor<tcp_client_manager_t∗> pthread_tcp_client_managers ; //
pthread

43

logger_t ∗ l o gg e r ;

#ifde f HAVE_PTHREAD
mutable pthread_mutex_t M; // mutext p r o t e c t i n g database acces s

#else
mutable int M; // p l a c eho l d e r

#endif

public :
// data s t r u c t u r e f o r one import e lement
struct import_element_t {

T hash ;
std : : s t r i n g repository_name ;
std : : s t r i n g f i l ename ;
uint64_t f i l e _ o f f s e t ;
import_element_t (const T p_hash ,

const std : : s t r i n g p_repository_name ,
const std : : s t r i n g p_filename ,
uint64_t p_ f i l e_o f f s e t) :

hash (p_hash) ,
repository_name (p_repository_name) ,
f i l ename (p_filename) ,
f i l e _ o f f s e t (p_ f i l e_o f f s e t) {

}
import_element_t () :

hash () ,
repository_name () ,
f i l ename () ,
f i l e _ o f f s e t (0) {

}
} ;

/∗∗
∗ The import input i s an array o f import_element_t o b j e c t s
∗ to be imported in t o the hash database .
∗/

typedef std : : vector<import_element_t> import_input_t ;

/∗∗
∗ The scan input i s an array o f hash va l u e s to be scanned f o r .
∗/

typedef std : : vector<T> scan_input_t ;

/∗∗
∗ The scan output i s an array o f pa i r s o f uint32_t index va l u e s t ha t
∗ index in t o the input vec tor , and uint32_t count va lues , where count
∗ i n d i c a t e s the number o f source e n t r i e s t h a t conta in t h i s hash va lue .
∗ The scan output does not conta in scan responses f o r hashes
∗ t h a t are not found (count=0) .
∗/

typedef std : : vector<std : : pa ir<uint32_t , uint32_t> > scan_output_t ;

/∗∗
∗ Constructor
∗/

hashdb_t__() ;

/∗∗
∗ Open fo r import ing , re turn t rue e l s e f a l s e wi th error s t r i n g .
∗/

44

std : : pa ir<bool , s td : : s t r i ng> open_import (const std : : s t r i n g&
p_hashdb_dir ,

uint32_t p_block_size ,
uint32_t p_max_duplicates) ;

/∗∗
∗ Import .
∗/

int import (const import_input_t& import_input) ;

/∗∗
∗ Import source metadata .
∗/

int import_metadata (const std : : s t r i n g& repository_name ,
const std : : s t r i n g& f i l ename ,
uint64_t f i l e s i z e ,
const T& hashd ige s t) ;

/∗∗
∗ Open fo r scanning wi th a l o c k around one scan resource .
∗ Return t rue e l s e f a l s e wi th error s t r i n g .
∗/

std : : pa ir<bool , s td : : s t r i ng> open_scan (const std : : s t r i n g&
p_path_or_socket) ;

/∗∗
∗ Open fo r scanning wi th a separa t e scan resource per thread .
∗ Return t rue e l s e f a l s e wi th error s t r i n g .
∗/

std : : pa ir<bool , s td : : s t r i ng> open_scan_pthread (
const std : : s t r i n g&

p_path_or_socket) ;

/∗∗
∗ Scan .
∗/

int scan (const scan_input_t& scan_input ,
scan_output_t& scan_output) const ;

#ifde f HAVE_CXX11
hashdb_t__(const hashdb_t__& other) = delete ;

#else
// don ’ t use t h i s .
hashdb_t__(const hashdb_t__& other) __attribute__ ((noreturn)) ;

#endif

#i fde f HAVE_CXX11
hashdb_t__& operator=(const hashdb_t__& other) = delete ;

#else
// don ’ t use t h i s .
hashdb_t__& operator=(const hashdb_t__& other) __attribute__

((noreturn)) ;
#endif

~hashdb_t__() ;
} ;

#endif

45

D bulk_extractor hashdb Scanner Usage Options

The bulk_extractor hashdb scanner provides two capabilities: 1) scanning a hash
database for fragments of previously encountered hash values, and 2) importing block
hashes into a new hash database. Options that control the hashdb scanner are pro-
vided to bulk_extractor using "-S name=value" parameters when bulk_extractor
is invoked. Available options are:

-S hashdb_mode=none Operational mode [none|import|scan]
none - The scanner is active but performs no action.
import - Import block hashes.
scan - Scan for matching block hashes. (hashdb)

-S hashdb_block_size=4096 Hash block size, in bytes, used to generate hashes (hashdb)
-S hashdb_ignore_empty_blocks=YES Selects to ignore empty blocks. (hashdb)
-S hashdb_scan_path_or_socket=your_hashdb_directory File path to a hash database or

socket to a hashdb server to scan against. Valid only in scan mode. (hashdb)
-S hashdb_scan_sector_size=512 Selects the scan sector size. Scans along

sector boundaries. Valid only in scan mode. (hashdb)
-S hashdb_scan_max_features=0 The maximum number of features lines to record

or 0 for no limit. Valid only in scan mode. (hashdb)
-S hashdb_import_sector_size=4096 Selects the import sector size. Imports along

sector boundaries. Valid only in import mode. (hashdb)
-S hashdb_import_repository_name=default_repository Sets the repository name to

attribute the import to. Valid only in import mode. (hashdb)
-S hashdb_import_max_duplicates=0 The maximum number of duplicates to import

for a given hash value, or 0 for no limit. Valid only in import mode. (hashdb)

46

	Introduction
	Overview of hashdb
	Purpose of this Manual
	Conventions Used in this Manual

	How hashdb Works
	Hash Blocks
	DFXML
	Creating a DFXML file using md5deep
	Creating a DFXML file using fiwalk
	Creating a DFXML file using hashdb

	Contents of a Hash Database
	Using the Hash Databases
	bulk_extractor
	Forensic Path

	Installation Guide
	Installing on Linux or Mac
	Installing on Windows
	Installing Other Related Tools

	Running hashdb
	General Usage
	Creating a Hash Database
	Importing and Exporting
	Database Manipulation
	Tracking Changes in Hash Databases

	Scan Services
	Statistics
	Tuning
	Performance Analysis
	Importing and Scanning Using the bulk_extractor hashdb Scanner

	Use Cases for hashdb
	Querying for Source or Database Information
	Querying a Remote Hash Database

	Writing Software that works with hashdb
	Scanning or Importing to a Database Using bulk_extractor
	Updating Hash Databases
	Update Commands and ``Duplicate'' Hashes

	Optimizing a Hash Database
	Exporting Hash Databases

	Worked Example: Finding Similarity Between Disk Images
	Troubleshooting
	Related Reading
	Appendices
	hashdb Quick Reference
	Output of hashdb Help Command
	hashdb API: hashdb.hpp
	bulk_extractor hashdb Scanner Usage Options

