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Bulk data analysis eschews file extraction and analysis, common in forensic practice today,

and instead processes data in “bulk,” recognizing and extracting salient details (“features”)

of use in the typical digital forensics investigation. This article presents the requirements,

design and implementation of the bulk_extractor, a high-performance carving and feature

extraction tool that uses bulk data analysis to allow the triage and rapid exploitation of

digital media. Bulk data analysis and the bulk_extractor are designed to complement

traditional forensic approaches, not replace them. The approach and implementation offer

several important advances over today’s forensic tools, including optimistic decompres-

sion of compressed data, context-based stop-lists, and the use of a “forensic path” to

document both the physical location and forensic transformations necessary to recon-

struct extracted evidence. The bulk_extractor is a stream-based forensic tool, meaning that

it scans the entire media from beginning to end without seeking the disk head, and is fully

parallelized, allowing it to work at the maximum I/O capabilities of the underlying hard-

ware (provided that the system has sufficient CPU resources). Although bulk_extractor was

developed as a research prototype, it has proved useful in actual police investigations, two

of which this article recounts.

Published by Elsevier Ltd.
1. Introduction

Digital forensics investigations have grown more difficult as

the capacity and diversity of devices containing digital

evidence increases.

Many approaches have been proposed for addressing the

data onslaught, including parallelization and multi-

processing (Ayers, 2009; Richard and Roussev, 2006), statis-

tical sampling (Garfinkel et al., 2010; Mora, 2010), and even

extending the time a suspect can be held without charge so

that evidence may be analyzed (Secretary of State for the

Home Department, 2007). But no matter what approach is
Elsevier Ltd.
used to improve performance, so long as a backlog exists,

some process must allocate limited forensic resources.

Diversity of media represents a different kind of challenge.

Increasingly evidence needs to be analyzed that is in file

system and file formats not supported by current tools.

Frequently the only way to analyze such data is to scavenge it

for printable strings and rely on the human examiner to make

sense of the data that are manually recovered.

Many organizations prioritize forensic processing with

reference to the nature of the case, without taking into

account the contents of the media itself. For example, the

FBI’s regional computer forensics laboratories give media
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from terrorism cases highest priority (RCF Laboratory, 2008).

Many local police departments use trial dates and the statute

of limitations to prioritize their workload.

Triage is a term widely used to denote the prioritization of

work according to a quality inherent in the objects being acted

upon. This article proposes expanding triage to include the

results of a rapid and largely automated analysis, performed

when themedia is first encountered. The results of such triage

can frequently reveal if the media is likely to have intelligence

value and, therefore, if the media should be prioritized for

immediate deep analysis.

This article describes advances recently made in bulk data

analysis, an approach for performing digital forensics that

eschews file extraction, and instead focuses on the processing

of bulk data and the extraction of salient details (“features”).

Unlike file-based approaches, bulk data analysis is particu-

larly well-suited to triage. Furthermore, combining forensic

feature extraction (Garfinkel, 2006) with optimistic decom-

pression (x3.3) allows the recovery of features that are other-

wise missed using current tools. Triage using bulk data

analysis is particularly useful in cases that involve multiple

pieces of digital evidence. For example, in a case involving

credit card theft, bulk data analysis can quickly identify which

laptop or cell phone has the largest collection of credit card

numbers, allowing investigators to prioritize. In an organized

crime or public corruption case, bulk data analysis can rapidly

identify which hard drives or cell phones contain email

addresses of interest and rapidly generate new leads. Users

have seen that the specialized bulk analysis software pre-

sented in this article can frequently process digital media

significantly faster than today’s industry standard tools.

Thus, systematic bulk data analysis has the potential for

transforming digital media analysis in law enforcement

from a conviction-support tool (through the identification of

illegal materials) to a tool that provides support early in an

investigation.
1.1. Contributions

This paper makes multiple contributions to the theory and

practice of digital forensics. First, it shows that bulk data

analysis without reference to an underlying file system can be

productively used as a fast analysis step during the early part

of an investigation. It shows that bulk data analysis is easily

adopted to stream processing and multi-threading. It shows

that recall rates of bulk data analysis can be significantly

improved through the use of optimistic decompression and

recursive re-analysis, for the simple reason that many

features of forensic interest are present in compressed byte

streams located in the unallocated regions of typical file

systems.

This paper presents bulk_extractor, a powerful tool for

performing bulk data analysis. It shares the experience of

developing bulk_extractor, providing a model for the develop-

ment of future digital forensic tools.

This paper introduces the concept of the context-sensitive

stop list, and explains how stop lists that do not include

context are susceptible to manipulation by criminals and

other adversaries.
This paper presents a new forensic disk image designed for

testingmodern digital forensic tools. It presents an evaluation

using this image that compares bulk_extractor with Guidance

Software’s EnCase (Guidance Software, Inc., 2011) and the

traditional approach of running the Unix strings and grep

commands. It shows that bulk_extractor can recover more

kinds of high-value forensic features than current tools and

explains the reasons for improved recall performance.

Finally, this paper presents two real-world case studies

that show how features provided by bulk data analysis have

been used productively in forensic investigations.

1.2. Outline of this article

This concludes the introduction. Section 2 discusses related

work. Section 3 discusses the design of the bulk analysis

system while Section 4 discusses the bulk_extractor imple-

mentation. Section 5 presents the results of bulk_extractor run

against both test data and hundreds of forensic images.

Section 6 presents two case studies. Section 7 discusses limi-

tations of our architecture and opportunities for future work.

Section 8 concludes.
2. Related work

2.1. File-based forensics, bulk data analysis, and file
carving

Two complementary approaches are now used in the pro-

cessing of digital evidence: file-based approaches and bulk data

analysis.

File-based approaches are widely used by digital forensic

examiners and implemented by popular tools such as Guid-

ance Software’s EnCase (Guidance Software, Inc., 2011) and

AccessData’s FTK (AccessData, 2011). Such tools operate by

finding, extracting, identifying and processing filesdthat is,

a sequential collection of bytes pointed to by file system

metadata.

Because they mirror the way that users interact with

computers, file-based approaches have the advantage of being

easy to understand. File-based approaches also integrate well

with most legal systems, as extracted files can be printed and

entered into evidence. They have the disadvantage of ignoring

data not contained within files. Additional limitations of file-

based approaches are discussed elsewhere (Garfinkel, 2010).

In bulk data analysis, digital content is examined without

regard to file system metadata. Instead, data of interest is

identified by content and processed, extracted, and reported

as necessary. File carving is an example of bulk data analysis,

although it is limited, because file carving ignores bulk data

that cannot be assembled into files.

File-based approaches and bulk data analysis are comple-

mentary. In file-based approaches the access of the forensic

tool mirrors that of the media’s original user and of typical

computer users. This makes the results easier to put in

context, easier to explain to those who may not have a tech-

nical background, and potentially easier to validate with

extrinsic data. Bulk data approaches have the advantage of

being applicable to all types of computer systems, file
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systems, and file typesdespecially those not handled by

existing tools. Bulk data analysis can also be readily applied to

media that has been damaged or partially overwritten. Finally,

in many cases bulk data analysis can find information that is

not recoverable through file-based approaches because of

limitations in specific file-based decoders.

2.2. Triage

Rogers et al. (2006) presented a Field Triage Process Model that

focused on approaches for triage using existing tools. Assert-

ing that “the value of planning and pre-raid intelligence

cannot be over-emphasized,” the authors presented

a methodical and largely manual triage process that involved

first ranking the media to be analyzed and then performing

a systematic exploration of the data that each device

contained.

Automated tools with limited triage functions are available

commercially. For example, ADF Triage by ADF Solutions can

scan a subject hard drive for documents containing specific

keywords and images likely to be pornographic (Parsonage,

2009).

Pearson and Watson (2010) published the book Digital

Triage which is heavily based on the experience of Explosive

Ordinance Disposal (EOD) teams in Iraq, with chapters on

battlefield forensics, the conducting of pre- and post-blast

investigations, and the analysis of cell phones on the

battlefield.

The work presented in this paper is most similar to the

DEC0DE system developed by Walls et al. (2011). That system

uses data-driven dynamic programming to identify call logs

and address book entries in cell phone memory dumps

without advance knowledge of how a vendor formats the

information. The system uses block hash filtering to find

data blocks common with other phones; these blocks are

then removed, leaving blocks of data likely to contain

information specific to the subject phone. This resulting data

is analyzed with a probabilistic state machine. The authors

state that their approach can process a 64 MB phone image in

15 min. The approach embodied in DEC0DE is not applicable

to digital forensics in general, but is restricted to the limited

domain of extracting structured information, such as

extracting call detail records and SMS logs from cell phone

memory dumps.

Clearly, even without specialized tools, examiners will

engage in workflow prioritization whenever there exists

a backlog of media to process. Nevertheless, policy and

experience indicates that frequently there is no triage process

at all, as work is frequently prioritized without reference to

the data contained in the media.

2.3. Recursive re-analysis and the recovery of
compressed information

The approach of recursively re-analyzing data during forensic

analysis is widely used by anti-virus programs, existingmedia

forensics tools (e.g. Guidance Software, Inc., 2011; AccessData,

2011), and network forensics tools. However, these tools

generally apply re-analysis solely to intact container files.

PyFlag (Cohen, 2008) applies recursive re-analysis to data in
runs of unallocated sectors, but only attempts to decompress

from the beginning of each run. The NetIntercept (Corey et al.,

2002) network forensic tool automatically decompresses

compressed network streams, but only for protocols known to

use compression.
2.4. Single-block forensics

Prior research introduced a simplified form of bulk data

processing that performed analysis of single sectors

(Garfinkel et al., 2010). The approach presented here is more

comprehensive, as it will identify features that cross sectors

or span multiple sectors. Further, this work also includes

recursive re-analysis of bulk data, while the prior single-

block work did not.
2.5. Forensic feature extraction

Computer media frequently contains a persistent record of

a subject’s associates, activities, and financial activities. As

such, software that automatically searches for these types of

artifacts can aid many investigations. The term forensic feature

extraction describes this process (Garfinkel, 2006).

Many forensic tools allow searching files and unallocated

sectors for strings that match user-specified regular expres-

sions. Vendors and trainers publish lists of regular expressions

that match email addresses, US telephone numbers, US social

security numbers, credit card numbers, IP addresses, and

other kinds of information typically useful in an investigation

(e.g. AccessData Corporation, 2008; Bunting, 2008, p. 304e305).

Credit card number searches are also performed by the Cornell

University Spider forensic tool (Cornell University IT Security

Office, 2008). The University of Michigan Information

Technology Security Services reviewed several tools for

discovering credit card and social security numbers in 2008.

The work presented here improves prior work in forensic

feature extraction by using hand-tuned rules that consider

local context, improving the precision of extraction without

adversely impacting recall. Furthermore, existing feature

extraction systems do not in general extract features from

compressed or otherwise encoded data.
2.6. Parallel processing

More than four decades of research has resulted in numerous

approaches for speeding text processing through the use of

parallelism. Indeed, Bird et al. discussed parallelized search-

ing of a 50 GB database using specialized machines in 1977.

Similar efforts continue to this day (Konstantopoulos et al.,

2009).

Although there have been some attempts to parallelize

forensic tools, little of this work is being used in the field. For

example, Marziale et al. adapted the Scalpel file carver to

offload complex computations to a GPU, but that version of

Scalpel was never released. Collange et al. (2009) considered

the use of GPUs to speed hash-based carving, but no

commercial forensic tool uses GPUs for hashing due to I/O

limitations. Urias et al. (2008) considered a variety of issues

involving the parallelized processing of RAID storage systems,
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but despite increasing media sizes, tools such as EnCase and

FTK are still largely single-threaded.

The parallelization described in this paper is distinguished

from prior efforts in that it is easily implemented and auto-

matically takes advantage of general-purpose multi-core

CPUs, the most common form of parallelized hardware

available. As such, this parallelism can be readily used by

current practitioners on hardware that they already have.

Indeed, the thread pool implementation described in this

paper was recently incorporated into the popular md5deep

hashing program (Kornblum, 2011).
2.7. Tool validation

The US Supreme Court held in Daubert that scientific evidence

presented in court must involve established techniques that

are peer-reviewed and have measurable error rates (Daubert

v. Merrell Dow Pharmaceuticals, 509 US 579, 1993;

Committee on Identifying the Needs of the Forensic Science

Community, 2009). But little is known about the accuracy of

feature extraction and string search of today’s forensic tools

(Lyle, 2010). The National Institute of Standards and Tech-

nology’s Computer Forensics Tool Testing Program created

draft specifications for String Search and Deleted File

Recovery (CFTT, 2008), but the drafts have not advanced past

an initial version and no test results have been published.

Important real-world requirements are missing from these

drafts, such as the ability to recover information from

complex document formats and compressed data.

In the absence of a standard, Guo et al. (2010) advocate

testing tools with simplified data sets containing known tar-

getsdfor example, by creating documents containing the

word “evidence” and then searching for the word. This paper

presents an improvement to Guo’s procedure that involves

embedding different targets in different file formats (x5.1).
This improvement makes it significantly easier to determine

the source of each extracted feature, since each feature is

self-identifying. A similar approach has since been identified

for use in the NIST Deleted File Recovery Test Images

after the NIST team was provided with a draft of this paper

(CFTT, 2012).
3. Introducing bulk_extractor

The bulk_extractor is a program that extracts email addresses,

credit card numbers, URLs, and other types of information

from any kind of digital evidence. The program operates on

disk images in raw, split-raw, EnCase E01 (Metz, 2008), and

AFF (Garfinkel et al., 2006) formats, but the program has also

been used productively on sessionized TCP/IP traffic,

memory dumps, and archives of files downloaded from the

Internet. The program can also directly analyze media

directly connected to the analyst’s computerdfor example,

with a write blocker. The data to be analyzed are divided into

pages that are separately processed by one or more scanners.

Identified features are stored in feature files, a simple line-

based format containing extracted features, their location,

and local context.
The bulk_extractor detects and optimistically decompress

data in ZIP, gzip, and Microsoft’s XPress Block Memory

Compression algorithm (Suiche, 2008). This has proven useful

in recovering email addresses from within fragments of cor-

rupted Windows hibernation files.

The bulk_extractor gets its speed through the use of GNU

flex (The Flex Project, 2008), which allows multiple regular

expressions to be compiled into a single finite state machine,

and multi-threading (x4.4), which allows multiple pages to be

analyzed at the same time on different cores.

After the features have been extracted, bulk_extractor builds

a histogram of email addresses, Google search terms, and

other extracted features. Stop lists can remove features not

relevant to a case.

The remainder of this section introduces bulk_extractor

with a typical case and then presents the program’s overall

design; the following section (x4) discusses the current

implementation; Section 5 presents approaches for validation.

3.1. Use case

The bulk_extractor is designed to be used in the early part of an

investigation involving digital media. A typical case might

involve the analysis of 20 laptops and desktops seized from

suspected members of a child exploitation group. Each piece

of subject media is connected to an analyst workstation with

a write-blocker and directly processed with bulk_extractor.

(Time to initiate: approximately 5 min per machine.) The

bulk_extractor runs in a batch, unattended operation. (Time to

process: between 1 and 8 h per piece of media, depending on

size and complexity of the subject data.)

Each running instance of bulk_extractor creates a directory

where the program’s output is stored. The output consists of

one or more feature files (Fig. 2). Each feature file is a text file

that contains the location of each feature found, the feature

itself, and the feature surrounded by its local context (typi-

cally 16 characters from either side of the feature). Typical

feature files are email.txt for email addresses, url.txt for URLs,

aes.txt for AES keys, and so on. Some of the information that is

present in the feature files originated in compressed data on

the subject disk. For example,many URLs and email addresses

were present in browser cache entries compressed with the

gzip compression algorithm. Because it was compressed, the

data would not be evident simply by running the Unix

“strings” program or by a manual examination of the disk

sectors.

When the extraction phase is finished, each instance of

bulk_extractor reads the feature files and creates a feature

histogram for each file. Post-processing also extracts a histo-

gram of popular search terms.

When the program finishes, the examiner may manually

review the histogram files:

� The list of email addresses provides the examiner with

a quick report of individuals that may have some connec-

tion to the drive. Email addresses can appear on a drive for

many reasonsdthey can be in emailmessages, or in theweb

cache from webmail, or in a web cache because they

appeared at the bottomof a news article that’s being read, or

even because they were in a Microsoft Office document.
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However, experience has shown that the most common

email addresses on a drive are typically present because

they were in multiple email or webmail messages, and that

is usually because they are associatedwith either the drive’s

primary user or one of that person’s correspondents.

� Search terms can be used as an indicator of the computer

user’s intent.

� The presence, frequency and number of credit card

numbers can be used to infer if the drive had a large number

of credit card numbers (an indication of either credit card

processing or credit card fraud), or a high frequency of

very few credit card numbers (an indicator of frequent

e-commerce).

Tools such as “grep” can be used to scan the list of URLs to

extract identifiers for Facebook, Microsoft Live, and other

online services. Lists of identifiers can also be uploaded to

other systems for correlation with law enforcement

databases.

Although the feature files can be directly entered into

evidence or used as the basis of a formal report, more

commonly the examiner will use the data to inform a more

detailed analysis of the media with a traditional forensic tool

such as EnCase or FTK. In this manner, bulk_extractor is used

for triagedthat is, to prioritize analysis based on the content

of themedia itself, rather than the circumstances surrounding

the media’s capture.

Because it is easy to use and readily integrated with

existing forensic processes, bulk_extractor has been adopted by

a number of law enforcement organizations, and its use is

growing.

3.2. Requirements study

Between 2003 and 2005 a prototype bulk media analysis tool

was developed by the author to assist in an unrelated inves-

tigation. Experience showed the tool to be significantly faster

than file-based systems and allowed easy answer to questions

of interest early in an investigation, such as Does this drive

contain sensitive information? What search terms were used? and

what is the most common email address on the drive?

Because the prototype did not map to an existing forensic

tool category, a series of unstructured interviews were held

with local, state and federal law enforcement (LE) forensic

examiners to determine if there was a need for this new kind

of tool. In total, approximately 20 interviews took place

between 2005 and 2008.

Although it may seem that the tool development described

here was the result of documented needs stated by LE, this

was not the case. LE practitioners interviewed at the time

were generally pleased with their then-current tools, which

seemed quite powerful and had required considerable effort

to master. Examiners merely wanted their existing tools to

run fasterdthey were not looking for tools that implemented

fundamentally new approaches. Indeed, at the beginning of

the interviews, several LE practitioners and trainers spoke

derisively of the desire to create a so-called “get evidence”

button. Such a button could not be created, these practitioners

asserted, because a computer would never be able to make

sense of all the information left behind on a digital storage
device and arrange it in amanner that was consistentwith the

objectives of a case.

It was only after seeing some of the initial results of the

early prototype that some analysts became enthusiastic about

the work and requested that the tool be further developed to

extract specific types of information, including:

� Email addresses

� Credit card numbers, including track 2 information

� Search terms (extracted from URLs)

� Phone numbers

� GPS coordinates

� EXIF (Exchangeable Image File Format) information from

JPEG images

� A list of all words present on the disk, for use in password

cracking

Interviewees also provided a number of operational

requirements:

� Run on Windows, Linux and Macintosh-based systems

� Operate on raw disk images, split-raw volumes, EnCase E01

evidence containers, and AFF evidence containers

� Perform batch analysis with no user input

� Allow users to provide additional regular expressions for

searches

� Automatically extract features from compressed data

� Run as fast as the physical drive or storage system could

deliver data

� Identify the specific files in the file system that are the

source of the extracted features

� Produce output as an easy to use text file

� Never crash

The interviews revealed that the primary need for such

a tool was triagedto prioritizewhich pieces of digital evidence

should be analyzed first, and to identify specific email

addresses for follow-up investigation. Final analysis, however,

would typically be performed with an “approved” tool.

3.3. Forensic scanners, feature extractors and optimistic
decompression

The bulk_extractor employs multiple scanners that run

sequentially on raw digital evidence. These scanners are

provided with a buffer to analyze (initially corresponding to

a 16 MiB page of data read from the disk image) the location or

path of the buffer’s first byte, and a mechanism for recording

extracted features. Special logic is used to handle features that

span across buffer borders (x4.3). All buffers are processed by

all scanners until there are no more buffers to analyze. At this

point the program performs post-processing and finally exits.

There are two types of scanners. Basic scanners are limited

to analyzing the buffer and recording what they find. An

example is the email scanner scan_email, which can find email

addresses, RFC822 headers, and other recognizable strings

likely to be in email messages.

Recursive scanners, as their name implies, can decode data

and pass it back to the buffer processor for re-analysis. An

example is scan_zip, which detects the components of ZIP files,
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records the ZIP header as an XML feature, decompresses the

data, and passes the decompressed data back to the buffer

processor. Most of bulk_extractor’s recursive scanners are opti-

mistic. That is, they scan the entire buffer for data that can be

decompressedor otherwise transformedand, if theyfind it, they

transform it as appropriate. In addition to decompressing, bul-

k_extractorusesoptimistic transformations forBASE64decoding,

PDF text extraction, and other encodings. Optimistic decoding

produces significantly higher recall rates than approaches that

only decode data from specifically recognized file formats.

The speed of the forensic tool is obviously impacted by the

use of additional scanners: the degree of the impact depends

on the data being analyzed. A disk image that contains no

compressed data will be processed more slowly merely

because the tool scans for compressed data; in testing this

degradation is not significant. Significant amounts of

compressed data, in contrast, will significantly slow process-

ing, especially if compressed data is contained within other

compressed regions.

Forensic programs that recursively process compressed

datamust guard against decompression bombsdfiles that, when

fully decompressed, extend to many terabytes, petabytes, or

more (Aera Network Security, 2009). The bulk_extractor

implements three defenses against compression bombs. First,

only a configurable portion of each compressed stream is

decompressed. Second, the page processor will not call the

recursive scanners when the depth reaches a configurable

limit (by default, five recursions). Finally, the tool computes

the cryptographic hash for each compressed region prior to

decompression; regions that have the same hash are only

decompressed once.

3.4. Feature files

Analysts requested that the tool provide output as a simple

text file that could be viewed with an editor or processed with

other “scripting” tools. Realizing this request is bulk_extractor’s

feature file format, a tab-delimited text file containing the offset

where each feature was found, the feature itself, and a con-

figurable number of bytes that precede and follow the feature

in the evidence file (Fig. 2). Feature files are not sorted but are

loosely ordered. The order is “loose” because it is determined,

in part, by the execution order of the multiple threads. As

a result, running bulk_extractor twice on the same subject

media will likely result in feature files that contain the same

lines, but for which the lines appear in a different order.

(Sorting the lines during processing would require either

additional memory or stalling one or more threads, both

unacceptable solutions.)

When it is necessary to report multiple values associated

with each extracted feature, the second and/or third fields of

the feature file can be replaced with an XML fragment. For

example, the JPEG scanner uses a block of XML to report all of

the fields associated with EXIF structures found within

embedded JPEGs.

3.5. Forensic location, path, and file system correlation

For reporting purposes it is important to identify the location

at which each piece of extracted information is found. This
can be challenging when using tools that have the ability to

extract information from within compressed objects, because

it is also necessary to document how the data must be

decompressed or otherwise decoded.

There are at least five potential sources of compressed data

on a hard drive:

1. Many web browsers download data from web servers with

gzip compression and persist the compressed stream

directly to the web cache. (The percentage of web servers

employing compression increased from less than 5%e30%

between 2003 and 2010 (Port80 Software, 2010) because

compression significantly increases web performance

(Pierzchala, 2006; Srinivasan, 2003).)

2. NTFS file compression may result in disk sectors that

contain compressed data. Themost commonly compressed

files are Windows restore points, as the operating system

compresses these automatically. However, users may

choose to have any file compressed.

3. Windows hibernation files frequently contain forensically

important information. Complicating access to this file is

Microsoft’s use of a proprietary compression algorithm

called Xpress (Suiche, 2008) and the fact that Windows

overwrites the beginning of the hibernation file when the

operating system resumes from hibernation. Also, the

hibernation file’s location on the hard drive moves as

a result of NTFS defragmentation operations (Beverly et al.,

2011); thus, any software that hopes to recover features

from hibernation files must be able to decompress incom-

plete hibernation file fragments.

4. Files are increasingly bundled together and distributed as

ZIP, RAR, or .tar.gz archives for convenience and to decrease

bandwidth requirements. These files are frequently written

to a hard drive. If deleted, one of the components may be

overwritten while the others remain.

5. The .docx and .pptx file formats used by Microsoft Office

store content as compressed XML files in ZIP archives

(Garfinkel and Migletz, 2009).

Consider amessage containing a set of credit card numbers

viewed using a webmail service. If the web client and server

both support HTTP compression, theweb pagewill most likely

be downloaded as a gzip-compressed stream; both Firefox and

Internet Explorer will store the compressed stream in the

browser cache. If the computer is suspended, the web

browser’ memory may be compressed with Xpress and stored

in the hibernation file. It is not enough simply to report where

the credit card numbers are found on the subject’s disk,

because looking at the disk sectors with a hex editor will not

show human-readable strings: it is also necessary to explain

how the data must be transformed to make them intelligible.

Current forensic tools do not encounter this problem

because they ignore compressed data that is not in known

compressed file container formats.

To resolve this problem, bulk_extractor reports a forensic

path for each feature found. For features recovered from

uncompressed data, the forensic path is simply the distance

in bytes from the beginning of the media. In cases where the

feature is contained within an object that is decompressed or

otherwise processed by a recursive scanner, the forensic path

http://dx.doi.org/10.1016/j.cose.2012.09.011
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contains information that can be used to repeat the decoding

process.

For example, the fourth line of Fig. 2 indicates that

jbarnes@virtuousgeek.org is found by decompressing the gzip

stream found at byte offset 318,707,924 from the start of the

disk image; the email address occurs 70 bytes from the start of

the decompressed stream. (The email address is contained

within the file /casper/filesystem.squashfs.)

Forensic paths can be extended: the email address nelson@

crynwr.com in Fig. 2 is found by decompressing the gzip

stream that begins at byte offset 946,315,592; 6400 bytes into the

decompressed stream is a second compressed stream; the

email address is found 1600 bytes into that stream. (This email

address appears within the file gnash-common_0.8.4-0ubuntu1_

i386.deb in the directory /var/cache/apt/archives/.)

Forensic paths can be readily translated to a specific loca-

tion in a resident or deleted file with a file system map. The

fiwalk program (Garfinkel, 2009) produces such a map in just

a fewminutes formost disk drives smaller than a terabyte; the

operation is fast because only file system metadata is exam-

ined. The program file_locations.py, included with bulk_

extractor, can then be used to annotate a feature file with the

file names corresponding to the sectors from which the

features were extracted.
Fig. 1 e Diagram showing overview of the bulk_extractor architec

or individual files and puts data into buffer structures called “s

scanners operating in the thread pool. Some of the scanners (e.g

which are in turn processed by all of the scanners. Features tha

processed by the histogram processor into histogram files. A g

allows the resultant feature files to be browsed at the conclusio
To recap: today’s practice for describing the location of

a feature extracted from a disk image is to report the sector

number or offset where the evidence is found. The evidence

can then be examinedwith a tool such as a hex editor to verify

the existence of the feature. This approach simply does not

work when the feature resides within compressed data:

examining the sector with a hex editor merely shows binary

data. The forensic path, introduced here, provides a clear,

concise and unambiguous way to describe both the location of

the extracted features and the specific decoding operations

that need to be executed in order to recover the data.

3.6. Histogram processing

Frequency distribution histograms can be of significant use in

forensic investigations (Garfinkel, 2006). For example,

a frequency histogram of email addresses found on a hard

drive readily identifies the drive’s primary user and that

person’s primary contacts.

Histogram generation is integrated with the feature

recording system so that histograms can be created for any

feature or feature substring at the conclusion of media pro-

cessing. For example, the regular expression below extracts

search terms provided to Google, Yahoo, and other popular
ture. Thread 0 reads data from a physical disk, disk image,

bufs”. These buffers are processed sequentially by the

. zip, pdf and hiberfile) are recursive; they create new sbufs,

t are extracted are stored in feature files which are, in turn,

raphical user interface (GUI), not described in this article,

n of the processing.
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Fig. 2 e Two excerpts from a feature file generated by processing the disk image ubnist1.gen3.E01 (Garfinkel et al., 2009). The

first column is the forensic path within the evidence file; the second column is the extracted email address; the third column

is the email address in context (unprintable characters are represented as underbars). These email addresses are extracted

from executables found within the Linux operating system and as a result do not constitute private information or human

subject data.
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search engines; the keyword substring is extracted with the

regular expression parenthesis operator:

search.*[?&/;fF][pq]¼([^&/]þ) (1)

Experience has shown that a histogram of the extracted

search terms dramatically improves their usefulness to the

investigator, since items of import tend to be present multiple

times on the subject media.

Histograms of search terms are particularly useful when

conducting an investigation, as they can reveal the intent of

the computer’s user (x6.1). Individuals frequently engage in

repeated searches for items of interest. However, the tool

explicitly does not suppress low-density information, since it

may be quite valuable in some cases. (x3.7 discusses

approaches for weighting features.)

For example, at the 2008 murder trial of Neil Entwistle,

prosecutors introduced evidence that Entwistle had per-

formed Internet searches for murder techniques just three

days before his wife and child were found dead (Associated

Press). The bulk_extractor’s ability to identify, extract and

make histograms of search terms has been used in court with

some success (x6.1).
Once the search terms are extracted, bulk_extractor creates

a histogram of the extracted terms.

Critical to using bulk_extractor’s reports in court is the fact

that the feature file clearly identifies the physical location on

the media from which the search terms were recovered; this

location allows the evidence to be rapidly located and re-

analyzed using other tools.
3.7. Context-sensitive stop lists

Many of the email addresses, phone numbers and other

identifiers on a hard drive are distributed as part of the oper-

ating system or application programs. For example, previous

work identified the email address mazrob@panix.com as

being part of the Windows 95 Utopia Sound Scheme

(Garfinkel, 2006). One way to suppress these common features

is to weigh each feature by its inverse corpus frequency,

a novel application of the well-known TF-IDF approach used

in information retrieval (Jones, 1972).

For reasons not anticipated in Garfinkel (2006), it is not

possible for many organizations to create a single list of all
email addresses extracted from every processed disk. Instead,

many organizations manually maintain lists of email

addresses and domain names to ignore based on examiner

experience. Such stop lists can also be readily produced from

default installs of popular operating systems.

There are a staggering number of email addresses and

URLs in some OSes. For example, Fedora Core 12 contains

nearly 14 thousand distinct email addresses (Table 2). Addi-

tional email addresses and URLs are also present in applica-

tion programs. Clearly, a forensic analyst who does not

employ stop lists will be overwhelmed by such information.

However, there is also a significant danger in naı̈vely

employing stop lists: They can provide criminals with the

ability to escape detection by using an email address associ-

ated with an operating system. Given that it is relatively easy

to get an arbitrary email address embedded in open source

programs, this is a significant and previously unrecognized

risk when using stop lists.

One solution, introduced with bulk_extractor, is the context-

sensitive stop list. The key insight is that email addresses such

as mazrob@panix.com should only be ignored when they are

encountered in the context of operating system filesd

elsewhere they should be reported. So instead of a stop list

containing just the email addresses found in default operating

system installs, bulk_extractor uses a stop list that contains the

local contextdthat is, the characters that appear before and

after the feature to be suppressed.

Table1 shows theresultsofhistogramprocessingonthenps-

2009-domexusers disk image before and after the application of

a context-sensitive stop list produced from several default

Windows XP, 2000 and 2003 installations. The stop list removes

email addresses clearly associated with certificate authorities

(e.g. ips@mail.ips.edu and premium-server@thawte.com), but

leaves those email addresses associated with the scenario.

Items on a stop list are not suppressed entirely. Instead,

they are reported in specially designated feature files. This

allows the examiner to manually review the stopped items to

verify that no case-specific information was inadvertently

excluded. It also allows validation of the stop list processing.
3.8. Alert lists (“Go lists”)

Whereas a Stop List is a list of features that should be sup-

pressed, an Alert List (also known has a “Go List”) is a list of

features that, when found, may warrant further investigation

mailto:mazrob@panix.com
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Table 1 e Histogram analysis of the nps-2009-domexusers disk image before and after the application of the context-
sensitive stop list. The email address 49091023.6070302@gmail.com is the Message-ID of a webmail message. This
histogram was generated with an earlier version of bulk_extractor.

Before After

Freq Email Freq Email

n ¼ 579 domexuser1@gmail.com n ¼ 579 domexuser1@gmail.com

n ¼ 432 domexuser2@gmail.com n ¼ 432 domexuser2@gmail.com

n ¼ 340 domexuser3@gmail.com n ¼ 340 domexuser3@gmail.com

n ¼ 268 ips@mail.ips.es n ¼ 192 domexuser2@live.com

n ¼ 252 premium-server@thawte.com n ¼ 153 domexuser2@hotmail.com

n ¼ 244 CPS-requests@verisign.com n ¼ 146 domexuser1@hotmail.com

n ¼ 242 someone@example.com n ¼ 134 domexuser1@live.com

n ¼ 237 inet@microsoft.com n ¼ 91 premium-server@thawte.com

n ¼ 192 domexuser2@live.com n ¼ 70 talkback@mozilla.org

n ¼ 153 domexuser2@hotmail.com n ¼ 69 hewitt@netscape.com

n ¼ 146 domexuser1@hotmail.com n ¼ 54 DOMEXUSER2@GMAIL.COM

n ¼ 134 domexuser1@live.com n ¼ 48 domexuser1%40gmail.com@imap.gmail.com

n ¼ 115 example@passport.com n ¼ 42 domex2@rad.li

n ¼ 115 myname@msn.com n ¼ 39 lord@netscape.com

n ¼ 110 ca@digsigtrust.com n ¼ 37 49091023.6070302@gmail.com
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and should immediately be brought to the attention of an

investigator. The bulk_extractorhas provisions for a global alert

list. Such a list could be email addresses known to be associ-

ated with fraud, IP addresses known to be associated with

malware, and so on.
4. Implementation

The bulk_extractor is a command-line program that imple-

ments the design described in the previous section and has

been deployed to several production environments around

the world. Version 1.2.0 of bulk_extractor consisted of 12,255

lines of Cþþ code and 1086 lines of GNU flex code. Fig. 1

depicts a conceptual overview of the program.

4.1. Functional modules

The current implementation of bulk_extractor consists of

five modules:
Table 2 e Number of unique features of each type found by bul
the hits in the CCNs column appear to be false positives. Thes
bulk_extractor.

VM CCNs Domains Email

fedora12-64 1 13,973 21,612

macos10.6 35 2432 2669

redhat54-ent-64 0 12,345 17,669

win2003-32bit 0 475 227

win2003-64bit 0 330 172

win2008-r2-64 64 565 254

win7-enterprise-32 68 699 365

win7-ultimate-64 68 677 371

winXP-32bit-sp3 0 492 306

winXP-64bit 0 404 262
1. The initialization module verifies command line parame-

ters, and creates the analysis thread pool.

2. The image processing module reads the disk image,

extracts a series of pages, and passes each page off to

a thread in the thread pool.

3. The analysis thread pool operates over multiple threads,

each of which receives an incoming page and processes it

with one or more feature scanners.

4. The feature scanners process each buffer and identifies

features that can be recovered.

5. The feature recordingmodule records features identified by

the scanners in one or more feature files.
4.2. Scanner implementation

Purpose-built scanners using hand-tuned rules extract

forensic information, an approach validated in the 1990s by

natural language researchers (Nadeau and Sekine, 2007). The

email and accounts scanners are both implemented as
k_extractor on various base operating system installs. All of
e numbers were generated with an earlier version of

Exif RFC822 Tel. URLs ZIPs

119 2017 662 75,555 55,172

909 485 256 6781 55,793

36 2052 3773 25,078 20,749

6 41 65 7878 149

5 40 42 7421 163

37 105 77 8196 91

149 110 77 6800 91

145 100 78 6606 105

7 61 132 8916 296

17 68 54 7869 296
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a series of regular expressions compiled using GNU Flex

(Fig. 3). This technique creates object code that can be mega-

bytes in size, but nevertheless runs quickly. Another scanner

implements the AES key-finding algorithm developed by

Halderman et al. (2009).

Early scanners produced unacceptably high levels of false

positives when processing PDFs, TIFFs, and other file types

containing long runs of formatted numbers. The false posi-

tives were decreased with additional hand-tuned filters that

examine the local context in which the features are found. For

example, EnCase 6.2.1 identifies the string “Box [�568 �307

2000 1006] /FontName” as containing the US phone number

“307 2000”, but bulk_extractor does not, as it recognizes that

the numbers are part of a larger group that does not conform

to the US phone number pattern.

The bulk_extractor uses a straightforward API with

a single callable function to initialize each scanner, process

bulk data, and perform post-processing. Scanners can be

linked into the bulk_extractor executable or loaded at run

time. This makes it easy for organizations to extend bul-

k_extractor using proprietary technology while still main-

taining an open source base that is usable by the general

community.

The current scanners distributed with the open source

bulk_extractor are shown in Table 3.
4.3. The margin

While it is straightforward to process a disk image block-by-

block or page-by-page, occasionally important features cross

block or page boundaries. Several file carvers that process bulk

data simply discard features that cross these boundaries.

Analysts interviewed were generally unaware that their tools

might systematically discard boundary-crossing features:
Fig. 3 e These excerpts from bulk_extractor’s scan_accts.flex inpu

multiple regular expressions are combined with external validat

and other types of information. Although these regular expressi

offer high speed and an astonishingly low false positive rate.
upon learning of this behavior, they pronounced it

unacceptable.

The bulk_extractor avoids this problembyappending to each

buffer a margin of additional bytes from the following page of

the evidence file. The implementation thus maintains two

lengths for each buffer: the page size and themargin size. These

valuesmaybe specified by theuser; the defaults are 16MiB and

1 MiB respectively. These defaults were determined experi-

mentally but can be readily changed as necessary.

The design of the margin poses minimal performance

overhead: while features can extend into themargin, once the

analysis point passes into the margin, the scanner stops.

Thus, features that begin in the margin are never considered.

The only significant overhead is the double-reading of the

data in the margin itself, although this data is typically

cached, minimizing the performance impact.

Themargin needs to be large enough so that any feature or

compressed region that begins near the end of the current

page will likely fit within the margin. The value of 1 MiB is

sufficient to cover most compressed streams. However, in

cases involving source code analysis, where there are likely to

be large .tar.gz archives, it is necessary to use a margin that is

larger than the largest anticipated archive.
4.4. Parallelizing bulk_extractor

Many authors have noted that it is vital for forensic tools to

adopt parallelism both in order to keep up with increasing

forensic collection sizes and to make the most efficient use of

modern hardware (e.g.Ayers, 2009; Richard and Roussev, 2006).

Vendors have been slow to parallelize their tools because of the

complexity of managingmultiple analyzers and combining the

results in a thread-safe manner. The approach of treating the

disk image as a series of independent pages turns feature
t file for GNU flex (The Flex Project, 2008) shows how

ors to extract credit card numbers, FedEx account numbers,

ons must be manually created, tuned and maintained, they
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Fig. 4 e Speed of bulk_extractor to process the 2.1 GB disk

image nps-2009-ubnist1.gen3 as a function of number of

threads and threading model. Reference computer was

aMacProwitha2GHz IntelCore i7CPUwith8GBof1333MHz

DDR3 RAM. The i7 has four physical cores and four virtual

cores with hyperthreading. Notice that the thread pool

shows linear performance improvement as the utilization of

physical cores increases, and thenagain linear improvement

(at a slower rate) as utilization of the hyperthreading virtual

cores increases. Increasing the number of threads beyond

the number of virtual cores results in no further

improvement of performance.

Table 3 e Scanners included with bulk_extractor 1.2.

Name Recognizes

Basic Scanners:

scan_accts Credit card numbers, phone numbers, and other formatted numbers

scan_aes AES key schedules in memory

scan_email RFC822 headers, HTTP Cookies, hostnames, IP addresses, email addresses, URLs

scan_exif JPEG EXIF headers

scan_find User-provided regular expression searches

scan_gps Garmin-formatted XML containing GPS coordinates

scan_json Javascript Object Notation (JSON)

scan_kml KML file recovery

scan_net IP and TCP packets in virtual memory; creates libpcap files

scan_winprefetch Windows prefetch files

scan_wordlist Words (for password cracking)

Recursive Scanners:

scan_base64 BASE64 coding

scan_gzip gzip (Deutsch, 1996a) compressed files (including HTTP streams)

scan_hiberfile Windows hibernation file decompression

scan_pdf DEFLATE (Deutsch, 1996b) compressed streams in PDF files and text extraction

scan_zip Components of ZIP compressed files
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extraction into an “embarrassingly parallel” problem, as each

page can be processed independently once features that cross

page boundaries are properly handled (x4.3).
A series of tests using the 2.1 GB nps-2009-ubnist1 disk

image (Garfinkel et al., 2009) validates bulk_extractor’s multi-

threading approach and demonstrates the relative perfor-

mance of multiple threads under Windows and MacOS. The

test machine was a MacBook Pro with 8GiB of RAM and 2 Ghz

four-core Intel i7 processor, and an SSD; the machine was

reboot between each trial to assure that the disk image was

not cached in the system’s RAM.

With a single thread, MacOS required on average 3998 s to

analyze the disk image, for an averageperformance of 0.53MB/

sec.With four analyzing threads the performance increased to

2.5MB/secdroughly a linear speedup, as evidenced by the first

part of Fig. 4. Cores 5 through 8 are hyperthreaded, meaning

that the processor runs instructions on these virtual “cores”

when thevarious functional units arenot otherwise inuse.Not

surprisingly, there isno longera strict linear speedup,although

the region of the graph as the number of cores are increased

from 5 to 8 is itself linear. With eight analyzing threads

performance increased to 3.0 MB/s. Thus, the additional four

hyperthreaded “cores” provide roughly the power as a single

physical core. This is uncharacteristically poor performance

for hyperthreading, and it argues that the bulk_extractor

threads aremaking excellent use of the CPU’s functional units,

leaving few resources available for the virtualized cores.

Additional threads resulted in lowerperformance, presumably

due to contention. For this reason, bulk_extractor automatically

determines the correct number of analyzing threads to use

when it runs, freeing the examiner from this task.

Although linear speedup is also observed under Windows,

the peak performance was roughly two-thirds of the same

hardware running MacOS. No speedup is observed when the

virtual cores are added. There is no good explanation for the

poor performance of bulk_extractor under the Windows oper-

ating system, although other programs that run under both

Windows and MacOS behave similarly.
A realistic comparison with EnCase was performed using

the 40 GB nps-2009-domexusers disk image as test data and

a typical examiner’s machine: a dual-processor Xenon X5650

at 2.67 Ghz (12 physical cores, 12 hyperthreaded cores), with

12 GiB RAM running Windows 7 Professional. The test was

simple: extract and report all of the email addresses in the

disk image. The results (Fig. 5) indicate that the multi-

threaded bulk_extractor extracted email addresses from the

forensic test disk image 10� faster than EnCase 6.2.1 running

on the same hardware, and was only 5% slower than simply

running ewfexport, strings and grep (Fig. 5) while performing

significantly more analysis. As will be shown in x5.1,

http://dx.doi.org/10.1016/j.cose.2012.09.011
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Fig. 5 e Guidance Software’s EnCase 6.2.1 takes 7h, 8min to

extract email addresses and other information from the

42 GB disk image nps-2009-domexusers. The bulk_extractor

performs the same task in 274 min in single-threaded

mode, and in 44 min in multi-threaded mode. The

combination of ewfexport, strings and grep runs fastest, in

just 42 min, but unlike bulk_extractor cannot extract email

addresses fromcompressed data regions and fails to extract

other information such as URLs and credit card numbers.

Tests were performed on a MacPro with 16 GiB 1066 MHz

DDR3 and two 2.26GHzquad-core Intel Xeonprocessors, for

12 physical cores and 12 virtual cores with hyperthreading.

The strings and grep commandswere run under the Cygwin

POSIX emulation environment. This graph was generated

with a previous version of bulk_extractor.
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bulk_extractor also found significantly more email addresses

than either EnCase or strings, because of its ability to extract

strings from compressed regions and from fragments of PDF

and hibernation files. Furthermore, bulk_extractor extracts

binary information that neither EnCase nor strings currently

finds, such as AES encryption keys.

Both EnCase and bulk_extractor produce files that can be

used to dramatically speed subsequent analysis. EnCase

produces an index file that can be used for full-text searching,

whereas bulk_extractor produces feature files that can be

rapidly searched using the Java-based bulk_extractor user

interface. Thus, both tools allow for searched email addresses

to be used as keys for finding additional information such as

the time a message was sent or the body of an email.
5. Validation

This section discusses how bulk_extractor has been tested with

constructed test data, clean operating system installs, and real

data.

5.1. Constructed test drives

Although the recovery of email addresses from disk drives

is a common forensic task, there are no standard tests or

data sets.

Faced with this lack of test images, a series of test docu-

ments was created using various office productivity applica-

tions. Each document contained a single descriptive email

address. Some of the documents were placed in a cleared
FAT32 disk image; others were used to generate PDF files that

were placed on the disk image. The disk image was then

subjected to analysis with bulk_extractor, EnCase 6.2.1, and

finally with the traditional combination of strings followed by

grep as a control.

For every target, bulk_extractor finds more email addresses

than either EnCase or the control, primarily because of its

ability to detect and recursively re-analyze compressed data

(Table 4). The only email addresses that bulk_extractor fails to

find are those in PDF files generated by Microsoft Office.

Analysis reveals that while Apple’s TextEdit preserves many

strings (Fig. 6) in the PDF file, Microsoft Word does not (Fig. 7).

Carrier (2010) has stated that the only reliable way to extract

text from PDFs is to render the page and process it with an

optical character recognition program, a strategy that bulk_

extractor does not employ.

5.2. Base OS installs

It is important to test forensic tools with base installations of

operating systems: characterizing the tool’s behavior on base

installs helps to predict how the tool will behave on the same

OS files when they are present on subject media.

Analyzing Linux systems with bulk_extractor yields thou-

sands of domains, email addresses, URLs, telephone numbers,

and components of ZIP files. Inspection reveals that the

domains and email addresses were largely those of Linux

developers; the URLs were typically those of open source

software update distribution points, web-based services used

for software updates and XML schema; the telephone

numbers are from software license agreements. For example,

the most common phone number (found 47 times) in the

Fedora 12 release was (412) 268-4387 (the number of the Car-

negieMellon University office of Technology Transfer, present

in several copyright licenses). The most common false posi-

tives come from arrays of numbers in PDF files that are

grouped in patterns resembling phone numbers. Adding a rule

to discard any phone number preceded by a pair of 3 or 4 digit

numbers or followed by the characters _/Subtype largely

solved this problem.

The Windows operating systems are, comparatively

speaking, quite clean. In the default Windows installations

there are only a few email addresses, but there are a signifi-

cant number of strings that appear to be “IP addresses” which

are actually version numbers and SNMP OIDs. The accuracy

rate of the IP address scanner could be improved by consid-

ering a larger context.

The results from running bulk_extractor on base OS installs

can be used for creating context-sensitive stop lists (x3.7).

5.3. Prevalence of compressed email addresses

To gauge the value of bulk_extractor’s optimistic decompres-

sion, used disks and USB storage devices still containing data

from their original users were analyzed for the presence of

email addresses that could be recovered using gzip or ZIP

decompression and that were not otherwise present.

The disk images, taken from the Real Data Corpus

(Garfinkel et al., 2009), come mostly from China, India, Israel

and Mexico. Previous research has established that used

http://dx.doi.org/10.1016/j.cose.2012.09.011
http://dx.doi.org/10.1016/j.cose.2012.09.011


Table 4 e Email addresses were stored in sample documents using specific applications. The documents were copied into
a disk image. The resulting image was analyzed separately with strings and grep, EnCase, and bulk_extractor. This table
shows which email addresses could be recovered.

email address Application (encoding) strings & grep EnCase BE

plain_text@textedit.com Apple TextEdit (UTF-8) ✔ ✔ ✔

plain_text_pdf@textedit.com Apple TextEdit print-to-PDF (/FlateDecode) ✔

rtf_text@textedit.com Apple TextEdit (RTF) ✔ ✔ ✔

rtf_text_pdf@textedit.com Apple TextEdit print-to-PDF (/FlateDecode) ✔

plain_utf16@textedit.com Apple TextEdit (UTF-16) ✔ ✔

plain_utf16_pdf@textedit.com Apple TextEdit print-to-PDF (/FlateDecode) ✔

pages@iwork09.com Apple Pages ‘09 ✔ ✔ ✔

pages_comment@iwork09.com Apple Pages (comment) ’09 ✔

keynote@iwork09.com Apple Keynote ’09 ✔

keynote_comment@iwork09.com Apple Keynote ’09 (comment) ✔

numbers@iwork09.com Apple Numbers ’09 ✔

numbers_comment@iwork09.com Apple Numbers ’09 (comment) ✔

user_doc@microsoftword.com Microsoft Word 2008 (Mac) (.doc file) ✔ ✔ ✔

user_doc_pdf@microsoftword.com Microsoft Word 2008 (Mac) print-to-PDF

user_docx@microsoftword.com Microsoft Word 2008 (Mac) (.docx file) ✔

user_docx_pdf@microsoftword.com Microsoft Word 2008 (Mac) print-to-PDF (.docx file)

xls_cell@microsoft_excel.com Microsoft Word 2008 (Mac) ✔ ✔ ✔

xls_comment@microsoft_excel.com Microsoft Word 2008 (Mac) ✔

xlsx_cell@microsoft_excel.com Microsoft Word 2008 (Mac) ✔

xlsx_cell_comment@microsoft_excel.com Microsoft Word 2008 (Mac) (Comment) ✔

doc_within_doc@document.com Microsoft Word 2007 (OLE .doc file within .doc) ✔ ✔ ✔

docx_within_docx@document.com Microsoft Word 2007 (OLE .doc file within .doc) ✔ ✔ ✔

ppt_within_doc@document.com Microsoft PowerPoint and Word 2007 (OLE .ppt

file within .doc)

✔ ✔ ✔

pptx_within_docx@document.com Microsoft PowerPoint and Word 2007 (OLE .pptx

file within .docx)

✔

xls_within_doc@document.com Microsoft Excel and Word 2007 (OLE .xls file

within .doc)

✔ ✔ ✔

xlsx_within_docx@document.com Microsoft Excel and Word 2007 (OLE .xlsx file

within .docx)

✔

email_in_zip@zipfile1.com text file within ZIP ✔

email_in_zip_zip@zipfile2.com ZIP’ed text file, ZIP’ed ✔

email_in_gzip@gzipfile.com text file within gzip ✔

email_in_gzip_gzip@gzipfile.com gzip’ed text file, gzip’ed ✔
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computer systems, purchased at second-hand computer

stores, in open-air markets, and other venues, frequently

contain information left from their former users. As a result,

the data from used computer systems can be productively

used as a surrogate for digital media acquired during the

course of law enforcement operations. Information collected

on the secondary market in this fashion has the advantage of

being usable in research, as it does not contain law-

enforcement sensitive information, provided that sufficient

privacy controls are in place. This study further confirms

those research findings.
Fig. 6 e An inflated stream from a PDF file created using

Apple’s TextEdit application. The original document

contained the string “plain_text_pdf@textedit.com”. Notice

that the email address is preserved in the output.
To gauge the age of each drive, the Date: headers in email

messages found on the disks were also extracted with

bulk_extractor. The date of each disks’ last activity was

computed by averaging the five most recent timestamps.

Visual inspection of a randomly chosen sample confirmed

that the extracted timestamps did in fact correspond to

actual times.

Email addresses present on more than a single drive were

discarded. The remaining addresses were tabulated according

to whether each email address appeared in plaintext or in

a compressed stream. There were 865 drives that contained

email addresses, of which 431 also contained timestamps.

Table 5 presents, for each year, the number of drives recov-

ered for that year, the total number of email addresses, the

number of email addresses encoded with each compression

algorithm, and the number of email addresses only present on

a single drive.

As shown, therearea significantnumberof email addresses

that can only be recovered by optimistically decompressing

forensic data, demonstrating once again that the recall

performance of forensic tools can be significantly improved

through the use of optimistic decompression.
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Fig. 7 e An inflated stream from a PDF file created using

Microsoft Word 2008 for Macintosh. The original document

contained the string “This is a testduser_doc_pdf@

microsoftword.com Really.” Notice that the email address

is split into three pieces.
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6. Case studies

This section discuss two cases in which bulk_extractor

provided timely information that proved critical to real-world

investigations.
Table 5eA study of 431disk drives acquired around theworld s
that can only be recovered by decompressing ZIP and gzip-com
restricted to those that were found on a single hard drive in th

Email addresses found

Year Drives Total In ZIP Uniq

1991 1 57 0

1992 1 2663 0

1993 2 33,352 0

1994 4 18,401 310

1995 13 76,469 53

1996 19 314,340 10

1997 16 755,597 276

1998 30 252,811 66

1999 30 1,167,208 79

2000 51 2,709,526 67,221

2001 51 1,180,587 360

2002 46 6,336,891 414

2003 44 1,654,880 429

2004 49 2,746,356 1088

2005 27 351,238 75

2006 26 326,480 56

2007 17 828,229 301

2008 4 799,127 9
6.1. Credit card fraud

In the spring of 2010 the San Luis Obispo, CA, County District

Attorney’s Office “filed charges of credit card fraud case and

possession of materials to make fraudulent credit cards

against two individuals” (Lehr, 2010). The day before the

suspects’ preliminary hearing, an evidence technician at the

SLO police department was given a 250 GB hard drive that had

been seized in conjunction with the suspects’ arrest. The

technician was told to find evidence that tied the suspects to

the alleged crime; the defense was expected to claim that the

computer belonged to an unindicted associate, and that the

defendants lacked computer skills.

An early version of bulk_extractor was able to analyze the

hard drive in roughly 2.5 h. The program quickly established

that:

� More than 10,000 credit card numbers were present on the

hard drive.

� The most common email address clearly belonged to the

primary defendant, disproving his contention that he had

no connection to the drive and helping to establish the

defendant’s possession of the credit card numbers.

� Themost common Internet search queries concerned credit

card fraud and bank identification numbers. This helped to

establish the defendant’s intent to commit fraud (Lehr,

2010).

Based on the reports generated by bulk_extractor and the

testimony of the technician, the court concluded that the

District Attorney had met the burden of proof to hold the

suspects pending trial.

It is unlikely that such high quality reporting could have

been generated so quickly (andwith so little effort on the part

of the investigator) with a conventional forensic tool. Given
hows that there is a significant presence of email addresses
pressed data streams. The email addresses in this table are
e study.

uely in a single
ZIP stream

In gzip Uniquely in a single
gzip stream

0 0 0

0 16 0

0 255 20

0 1096 421

14 1353 71

1 43,567 1532

86 31,057 1066

4 297 14

4 118 11

306 199,063 3615

109 9118 710

57 341,810 9178

95 19,444 563

222 30,705 9989

3 2656 127

7 1370 40

0 3319 388

2 2171 59
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the time pressures, it is quite possible that the suspects

would have been granted bail without the bulk_extractor

results and might have left the country, complicating

prosecution.

6.2. ATM fraud

Also in 2010, A 250 GB disk drive was recovered from indi-

viduals suspected of placing credit-card “skimmers” and

pinhole cameras at ATM machines in a major US city. Police

needed to rapidly supply the banks with a list of the

compromised credit card numbers so that the accounts could

be closed.

The bulk_extractor completed its processing after just 2 h on

a quad-core computer. The banks in question were provided

with the ccns.txt output file (a list of credit-card numbers found

on the drive), and were able to immediately shut down the

accounts before fraud could be committed.

As in the previous case, it is unlikely that conventional file-

based tools could have found the compromised credit card

numbers in so short a time. Although a program such as strings

might have extracted some of the email addresses and credit

card numbers, it would not have created the histograms or

suppressed false-positives. (The bulk_extractor credit card

scanner includes substantial code for suppressing numbers

that satisfy the Luhn (1960) algorithm but are nevertheless not

valid. Because the Lhun algorithm is a single digit checksum, 1-

out-of-10 sequencesof randomdigits that are thecorrect length

satisfy the check. For example, 5555-4444-3333-2226 satisfies

the Lhun algorithm. The bulk_extractor suppresses the number

because of the abnormal distribution of digits. Additional

checks that examine the local context are described in Section

4.2.) Being able to find the card numbers in short orderwas vital

to blocking the cards before fraud could be committed.
7. Limitations and future work

Bulk data analysis and the bulk_extractor are designed to

complement traditional forensic approaches, not replace

them. This section discusses specific limitations that have

been encountered and the outlook for this technology.

7.1. Theoretical limitations of bulk data analysis

The primary limitation of bulk data analysis is that

compressed objects fragmented across multiple locations are

difficult to recover. However, with the exception of log files,

most forensically interesting files are not fragmented

(Garfinkel, 2007). While most log files are fragmented, most

are stored without compression, allowing the various frag-

ments to be matched and recombined. In the rare cases that

compressed objects are fragmented, Memon has shown that

decompressing the compressed streams can be used as a tool

for fragment reassembly (Sencar and Memon, 2009).

7.2. Unicode and internationalization

Unicode and non-Latin character sets pose challenges for bulk

data processing and extraction. An added complication is that
ASCII and Unicode are not the only types of localized strings

likely to be found. Data may be coded using a Windows Code

Page, Big5, EUC-JP, GB18030, Shift-JIS, or other coding

schemes.

Fortunately, most email addresses and URLs encountered

today are in simple ASCII or ASCII encoded as UTF-16, both of

which are handled by bulk_extractor. In the near term, bul-

k_extractor will be modified to incorporate other strategies.

7.3. Characterization of bulk data

In addition to feature extraction, it is also useful at times to

report on the overall characteristics of bulk data. For this

reason a future version of bulk_extractor will implement an

algorithm, previously described, for distinguishing

compressed data from encrypted data (Garfinkel et al., 2010),

and will report the amount of encrypted data present on the

digital media being examined.

7.4. Correlation with other kinds of forensic data

Much of the information that is produced by a run of bulk_ex-

tractor can be correlated with other kinds of forensic informa-

tion. For example, the output of bulk_extractor can be readily

used for cross-drive analysis (Garfinkel, 2006). It is also possible to

use network contextual data to provide linkage to other kinds

of network forensics data. Such linkage can be critical in scene

reconstruction for the eventual courtroom presentation.
8. Conclusion

This paper discusses a number of advances in the field of bulk

data analysis and presents the design and implementation of

the bulk_extractor, a forensic tool that extracts forensic

features from bulk data. Information extracted by bulk_ex-

tractor is reported in feature files that indicate where each

feature was found in the source file. The bulk_extractor also

performs histogram analysis. Histograms can be used to

rapidly determine the most common email addresses and

most frequent search terms present on a hard drive. The tool

optimistically decompresses compressed data that it

encounters.

The bulk_extractor was developed as a research platform

but has found use in actual cases. The program’s source code,

ancillary programs, and pre-compiled executables for

Windows are available for download at http://forensicswiki.

org/wiki/bulk_extractor/. The code is public domain and may

be freely incorporated into other open source or commercial

applications.

The constructed drive image can be downloaded from

http://digitalcorpora.org.
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