The Advanced Forensic Format 1.0

Introduction

The Advanced Forensic Format (AFF) 1.0 is an extensible open format for the storage of disk images and related forensic information.

Features of AFF include:

· Open format, free from any patent or license restriction. Can be used with both open-source and proprietary forensic tools.

· Extensible. Any amount of metadata can be encoded in AFF files in the format of name/value pairs.

· Efficient. AFF supports both compression and seeking within compressed files.

· Open Source C/C++ Implementation. A freely redistributable C/C++ implementation including the AFF Library and basic conversion tools is available for download. AFFLib is being distributed under the BSD license, allowing it to be incorporated in free and proprietary programs without the need to pay license fees.

· Byte-order independent. AFFLib has been tested on both Intel and PowerPC‑based systems. Images created on one platform can be read on another.

· Automatic calculation and storage of MD5 and SHA-1 hash codes. This allows AFF files to be automatically validated after they are copied to check for accidental corruption.

· Explicit identification of bad sectors. This enables higher layers of forensic analysis software to distinguish between sectors which truly contained all zeros and sectors which may have contained information but which were unreadable.

· Support for digital signatures. This is planned for a future release.

· Direct authoring of AFF files. This is planned for a future release, and will be provided using dd_recover.

AFF is distributed as a subroutine library. The library implements a FILE-like abstraction that supports the full range of POSIX-like file routines, including af_open(), af_read(), af_seek(), af_close(). The af_open() routine checks to see if a file is an AFF file and, if not, can automatically fall-back into raw mode. Thus, most existing forensic tools can be trivially modified to work with AFF-formatted files.

The AFF library can be downloaded from http://www.afflib.org/download.php
How AFF Works

AFF is a segmented archive file specification. Each AFF file consists of an AFF File Header followed by one or more AFF Segments.

AFF Segments

AFF Segments are used to store all information inside the AFF File. This includes the image itself and image metadata.

Segments can be between 32 bytes and 2³²-1 bytes long. When used to store the contents of a disk image, the image is broken up into a number of equal-sized Image Segments. These image segments are then optionally compressed and stored sequentially in the AFF file.
Each AFF Segment has a header, a name, a 32-bit argument, an optional data payload, and finally a tail. The header and tail make it possible to seek rapidly through the AFF file, skipping much of the image data.

The segment size of the image file is determined when the file is converted from a RAW file to an AFF file. Once a file is converted, it can be opened using af_open() and read using af_read() and af_seek(). The AFF library automatically handles the locating, reading, and optional decompressing of each segment as needed.

Other segments can be used to hold information such as the time that the disk was imaged, a case number, the forensic examiner, and the MD5 or SHA-1 of the original unconverted image file. Utility programs are included in the AFF Library to display this information and validate the contents of an AFF file against the stored hashes.

AFF uses OpenSSL for computing hash functions and ZLIB for compressing image segments.

AFF Utility Programs

The AFF Library comes with the following utility programs:

aconvert
-
converts one or more RAW files to AFF format.

acompare
-
compares a raw file to its AFF file.

ainfo
-
Reports information about an AFF file, including all the segments and their contents. Validates MD5 & SHA1 codes.

acat
-
Copies an AFF file to a RAW file (or standard output)

AFF Details

AFF Segment Names

The following AFF Segment Names have been defined in the initial release:

segsize
-
The size of each image segment, stored as a 32-bit value.

imagesize
-
The total number of bytes in the file, stored as a 64-bit value.

md5
-
The MD5 of the uncompressed image file, stored as 128-bit value.

sha1
-
The SHA-1 of the uncompressed image file, stored as a 160-bit value.

badflag
-
A 512-bit value that is stored in the file to denote a bad sector. This value typically consists of the string "BAD SECTOR\000" followed by a timestamp and a block of random data.

badsector
-
The total number of bad sectors in the image, stored as a 32-bit number.

seg0
-
The contents of the first segment in the image file. A flag of '1' stored in the segment argument indicates that the segment was compressed with zlib.

seg1
-
The contents of the second segment in the image file

segNNN
-
The contents of the NNNth segment of the image file.

a.manufacturer
-
The manufacturer of the disk drive, stored as a UTF-8 string.

a.model
-
The model number of the disk drive, stored as a UTF-8 string.

a.property
-
Any arbitrary “property” of the disk drive, stored as a UTF-8 string.

xxx
-
This segment should be ignored. (Space may be left for future use.)

The AFF Segment Format

Each AFF Segment contains the following information:

- The Segment Header
- The Segment Data Payload
- The Segment Footer

The Segment Header consists of the following

- A 4-byte Segment Header Flag ("AFF\000")
- The Length of the segment name (as an unsigned 4-byte value)
- The Length of the segment data payload
- The “argument”, a 32-bit unsigned value
- The data segment name (stored as a Unicode UTF-8 string)

The Segment Footer consists of:

- The 4-byte Segment Footer Flag ("ATT\000")
- The length of the entire segment, as a 32-bit unsigned value

Because the segment length can be determined by reading both the Header or the Footer, the AFF library can seek forwards or backwards in the AFF file, similar to the way that a tape drive seeks forwards and backwards through a tape drive.

All 4-byte binary values are stored in network byte order to provide for byte order independence. These values are automatically written with the htonl() macro and read with the ntohl() macro by the AFF Library.

AFF OPTIMIZATIONS:

Although the AFF file format is quite simple, the library and conversion routines implement a variety of optimizations to speed conversion and reading. Among these optimizations are:

· Image segments are only compressed in the AFF file if compression would decrease the amount of data required by 5%. Otherwise no compression is performed. As a result, images containing uncompressible data are not compressed. This saves CPU time.

· When an image is converted, space is left at the beginning of the AFF file for the image hash and other metadata. As a result, this information can be rapidly read when a new AFF image is opened.

· AFF’s af_read() routine caches the current image segment being read, allowing for rapid seeking within the segment. And because all image segments represent the same number of bytes in the original image file, the library routine can rapidly locate the image segment that corresponds to any byte offset within the original raw image, load that image segment into memory, and return the sectors that are requested.

License

The AFF Library is distributed with a modified BSD license that allows the use of AFF in any program, free or commercial, provided that the copyright statement is included in both the source and binary file. Term #3 of the standard Berkeley license requiring that the copyright statement be included in advertisements has been dropped.

AFF Frequently Asked Questions

Q: Why a new file format? What’s wrong with block-by-block?

A: Raw image files take up a lot of space. In many cases this space can be dramatically reduced by using compression. Unfortunately, if you just use “gzip” or “bzip2” for compression, you need to uncompress the entire file in order to use it with a forensics program. That’s because there is no easy way to “seek” within a compressed file.

The proprietary EnCase® file format supports seeking within a compressed file, but the specification for this file format is not publicly available and may be encumbered by patents and other intellectual property restrictions which inhibit widespread adoption. Also, the EnCase file format does not allow the storage of arbitrary name/value pairs, which are essential to any extensible file format.

Q: Why not put meta information into log files?

A: In many cases it is advantageous to store meta information (such as case numbers, acquisition times, the name of the investigator, etc.) directly in the image file. For example, storing this information in a single file with the image makes it very unlikely that they will become separated, and perhaps the wrong log file being used with an image.

Q: How does AFF interact with anti-virus systems?

A: Any forensic file format which captures 100% of the information present on a hard drive has the potential to be a virus pathway into a secure computer system. In this regard, AFF is no different from DCFLDD, EnCase, or any other forensic file system, and the implementers of any production forensic system must exercise appropriate care in ensuring that no viruses pathways exist.

However, AFF has a key advantage over storing forensic images in raw files in that it allows anti-virus software to run on the imaging system. With the raw format, viruses in the image files will trigger the host computer's anti-virus system. With AFF, the anti-virus software will only trigger in the event a virus has escaped the disk image and been stored on the computer's hard drive. In this regard, use of AFF allows construction of a more secure overall system architecture.

Q: Will AFF support hashes other than MD5 and SHA-1?

A: Yes. The MD5 hash is stored in a segment named “md5”. The SHA-1 hash is stored in a segment named “sha1”. As support for other hash functions are added to the OpenSSL library, the “aconvert” and “aimage” programs will be updated to automatically calculate and store the other hashes in the AFF files.

Q: Are the images then mountable in some way to be able to check for virus/trojans, or must they be uncompressed for host-based tools to work with them?

A: If you have source code for a scanner, you can modify it to use af_open() and af_read() instead of fopen() and fread(). You can then read the AFF files directly. If you don’t have source code, but have a scanner that can read from standard input, you can use the “acat” program to copy the contents of an AFF file to standard output.

Eventually, we plan to have a version of samba that is modified to transparently mount and serve an AFF file. This will allow off-the-shelf Windows executables to be used with AFF archives.

Q: How long do you think it will be before EnCase®, ProDiscover®, FTK, and the open source tools are able to process files in this format?

A: The AFF team is currently modifying some of the open source tools to handle AFF. It’s actually quite easy to modify an open source tool to work with AFF: you simply replace the fopen() call with af_open(); fseek() with af_seek(); and fclose() with af_close().

We’ve had no contact with the authors of EnCase, ProDiscover, or FTK. However, we believe that if AFF becomes popular they will modify their tools to handle the format. But even if they don't, we plan to support those tools through the use of a samba loopback filesystem.

Q: Will it be possible to mount an AFF image as a “virtual file system” the way you can with EnCase?

A: Yes, we intend to create a device driver that will perform the necessary transformation. That is how the AFFLIB af_read() and af_seek() function calls are implemented.

Q: Wouldn’t it be more efficient to have an index segment, rather than having to read through all of the individual AFF Headers for each segment?

A: We thought so as well! However, our initial experiments indicated that the overhead for doing a seek for every 16MB segment and reading a few bytes was quite minimal. The advantage of not having to maintain the index is significant. However, if the overhead becomes substantial, we can easily add an index segment type. The design of AFF allows for an index segment to be added to an existing AFF file without changing the contents of the segments that contain forensic information.

Q: It’s very important for us to have a format which can be written into a pipe because that makes acquisition over the network much easier. Can AFF handle this?

A: The “aimage” acquisition program currently under development allows for acquisition either from an ATA/USB/Firewire device or over a network. It allows for discontinuous segments of the disk to be acquired at different times and for data to be inserted into a single AFF file.

EnCase® is a registered trademark of Guidance Software, Inc.
ProDiscover® is a registered trademark of Technology Pathways, LLC.

Copyright © 2005 Basis Technology Corp. and Simson L. Garfinkel
Page 1 of 1
All rights reserved.

